MODERN ALGEBRA 1: HOMEWORK 2

The problem numbers refer to Artin's Algebra (2nd edition).
(1) Chapter 1: 1.7
(2) Chapter 1: 4.4
(3) Chapter 1: 6.2 (Hint: Use cofactors - Theorem 1.6.9).
(4) Chapter 2: 2.4
(5) Suppose $(a b)^{2}=a^{2} b^{2}$ for all a, b in a group G. Prove that G is abelian.
(6) Prove that the set of 3×3 matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
& 1 & c \\
& & 1
\end{array}\right), \quad a, b, c \in \mathbf{R}
$$

is a subgroup of $\mathrm{GL}_{3}(\mathbf{R})$. It is called the Heisenberg group.
(7) Recall that the Klein four group consists of the matrices

$$
\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)
$$

Find all the subgroups of the Klein four group.
(8) Suppose G is a finite group whose order is even. Show that there exists an element of G different from the identity which is its own inverse.
(9) Recall that for an element $x \in G$, the subgroup generated by x is the subgroup

$$
\left\{\ldots, x^{-2}, x^{-1}, e, x^{1}, x^{2}, \ldots\right\}
$$

Let $n \geq 1$ be an integer. Write a 2×2 matrix that generates a subgroup of order n of $\mathrm{GL}_{2}(\mathbf{R})$. Write a matrix that generates an infinite subgroup of $\mathrm{GL}_{2}(\mathbf{R})$. Justify (i.e. prove) your answers.

