## **MODERN ALGEBRA 1: HOMEWORK 2**

The problem numbers refer to Artin's Algebra (2nd edition).

- (1) Chapter 1: 1.7
- (2) Chapter 1: 4.4
- (3) Chapter 1: 6.2 (*Hint: Use cofactors Theorem 1.6.9*).
- (4) Chapter 2: 2.4
- (5) Suppose  $(ab)^2 = a^2b^2$  for all *a*, *b* in a group *G*. Prove that *G* is abelian.
- (6) Prove that the set of  $3 \times 3$  matrices of the form

$$\begin{pmatrix} 1 & a & b \\ & 1 & c \\ & & 1 \end{pmatrix}, \quad a, b, c \in \mathbf{R}$$

is a subgroup of  $GL_3(\mathbf{R})$ . It is called the *Heisenberg group*.

(7) Recall that the Klein four group consists of the matrices

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}.$$

Find all the subgroups of the Klein four group.

- (8) Suppose *G* is a finite group whose order is even. Show that there exists an element of *G* different from the identity which is its own inverse.
- (9) Recall that for an element  $x \in G$ , the subgroup generated by x is the subgroup

$$\{\ldots, x^{-2}, x^{-1}, e, x^1, x^2, \ldots\}.$$

Let  $n \ge 1$  be an integer. Write a  $2 \times 2$  matrix that generates a subgroup of order n of  $GL_2(\mathbf{R})$ . Write a matrix that generates an infinite subgroup of  $GL_2(\mathbf{R})$ . Justify (i.e. prove) your answers.