MODERN ALGEBRA 1: HOMEWORK 1

(1) For sets A, B, and C, prove that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Illustrate this with a Venn diagram.
(2) For a set S, the power set of S is the set of all subsets of S. In symbols,

$$
P(S)=\{A \mid A \subset S\}
$$

(a) Write down the power set of $\{0,1\}$.
(b) Write down the power set of \varnothing.
(c) Let S be a finite set with $|S|=n$. What is the cardinality of $P(S)$? Justify your answer.
(3) Let $S=\{1,2,3\}$. Find two specific functions $f: S \rightarrow S$ and $g: S \rightarrow S$ such that $f \circ g \neq g \circ f$. Do the same with S replaced by the real numbers \mathbf{R}.
(4) We saw in class that if both f and g are injective then $g \circ f$ is injective.
(a) Prove that if $g \circ f$ is injective, then f is injective.
(b) Give an example to show that if $g \circ f$ is injective, then g need not be injective.
(5) Formulate and solve the correct version of the previous problem (both parts) with "injective" replaced by "surjective."
(6) Let A be a finite set and $f: A \rightarrow A$ a function. Show that f is injective if and only if f is surjective.

Show that the above statement is not true for infinite sets. In other words, give an example of an infinite set A and a function $f: A \rightarrow A$ which is injective but not surjective and a function $g: A \rightarrow A$ which is surjective but not injective.
(7) Let $f: A \rightarrow B$ be a map of sets. A map $g: B \rightarrow A$ is called an inverse of f if $g \circ f: A \rightarrow A$ is the identity map of A and $f \circ g: B \rightarrow B$ is the identity map of B. Show that f admits an inverse if and only if f is bijective.
(The identity map id :S $\rightarrow S$ is the map that sends x to x for all $x \in S$.)
(8) Let $\phi: \mathbf{Z} \rightarrow \mathbf{R}$ be the map defined by

$$
\phi(n)=n^{3}-3 n+1
$$

Is ϕ surjective? Is ϕ injective? Justify your answers.

