MODERN ALGEBRA 1: HOMEWORK 1

(1) For sets *A*, *B*, and *C*, prove that

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Illustrate this with a Venn diagram.

(2) For a set *S*, the *power set of S* is the set of all subsets of *S*. In symbols,

$$P(S) = \{A \mid A \subset S\}.$$

- (a) Write down the power set of $\{0, 1\}$.
- (b) Write down the power set of \emptyset .
- (c) Let *S* be a finite set with |S| = n. What is the cardinality of P(S)? Justify your answer.
- (3) Let $S = \{1, 2, 3\}$. Find two specific functions $f: S \to S$ and $g: S \to S$ such that $f \circ g \neq g \circ f$. Do the same with *S* replaced by the real numbers **R**.
- (4) We saw in class that if both *f* and *g* are injective then $g \circ f$ is injective.
 - (a) Prove that if $g \circ f$ is injective, then f is injective.
 - (b) Give an example to show that if $g \circ f$ is injective, then g need not be injective.
- (5) Formulate and solve the correct version of the previous problem (both parts) with "injective" replaced by "surjective."
- (6) Let A be a finite set and f: A → A a function. Show that f is injective if and only if f is surjective.

Show that the above statement is not true for infinite sets. In other words, give an example of an infinite set *A* and a function $f: A \rightarrow A$ which is injective but not surjective and a function $g: A \rightarrow A$ which is surjective but not injective.

(7) Let $f: A \to B$ be a map of sets. A map $g: B \to A$ is called an *inverse* of f if $g \circ f: A \to A$ is the identity map of A and $f \circ g: B \to B$ is the identity map of B. Show that f admits an inverse if and only if f is bijective.

(The identity map id : $S \rightarrow S$ is the map that sends x to x for all $x \in S$.)

(8) Let ϕ : **Z** \rightarrow **R** be the map defined by

$$\phi(n) = n^3 - 3n + 1.$$

Is ϕ surjective? Is ϕ injective? Justify your answers.