
Modern Algebra 1: Midterm 2

November 11, 2013

• Answer the questions in the space provided.

• There are 5 questions. There is an additional bonus question at the end. Attempt it
only if you have enough time.

• Give concise but adequate reasoning. You may use any statement from class or
textbook without proof, but you must clearly state what you are using.

• At the end, there are some blank pages for scratch work. You may detach them.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50
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1. (a) (4 points) State the definition of a normal subgroup.

Solution: A subgroup H ⊂ G is called a normal subgroup if gHg−1 = H for
all g ∈ G.
Equivalently, a subgroup H ⊂ G is called a normal subgroup if gH = Hg for
all g ∈ G.

(b) (3 points) Give an example of a normal subgroup of S4 other than {e} or S4.
Explain why your example is a normal subgroup.

Solution: Consider the alternating group A4 consisting of permutations in
S4 with sign +1. Then A4 is a normal subgroup of S4 because it is the kernel
of the homomorphism sgn : S4 → {±1}.
Also, the set {id, (12)(34), (14)(23), (13)(24)} is a normal subgroup of S4, be-
ing the kernel of a homomorphism S4 → S3.

(c) (3 points) Give an example of a subgroup of S4 that is not a normal subgroup.
Explain why your example is not a normal subgroup.

Solution: Consider the two element subgroup H = {id, (12)}. Taking g =
(13), we get g(12)g−1 = (23) 6∈ H. So H is not a normal subgroup.
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2. (10 points) Let G be the subgroup of GL2(R) defined by

G =

{(
a b
0 c

)
| a, b, c ∈ R, ac 6= 0

}
.

Let H ⊂ G be the subgroup defined by a = c = 1. Prove that H is a normal subgroup
of G and identify G/H.

Solution: Define a function φ : G → R× × R× by

φ

(
a b
0 c

)
= (a, c).

Since the matrix entries a and c can be any nonzero real numbers, φ is surjective.

Let us check that φ is a homomorphism. Let

M1 =

(
a1 b1
0 c1

)
, and M2 =

(
a2 b2
0 c2

)
.

Then

M1M2 =

(
a1a2 a1b2 + b1c2

0 c1c2

)
.

Therefore, we get

φ(M1M2) = (a1a2, c1c2) = φ(M1)φ(M2).

Hence φ is a homomorphism.

Also, φ

(
a b
0 c

)
= (1, 1) if and only if a = c = 1. So, ker φ = H.

Since the kernel of a homomorphism is a normal subgroup, we deduce that H is
a normal subgroup of G.

By the first isomorphism theorem, we get

G/H = G/ ker φ ∼= im φ = R× × R×.
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3. (10 points) Let G and H be finite groups whose orders are relatively prime (that is,
gcd(|G|, |H|) = 1). Show that the only homomorphism φ : G → H is the trivial
homomorphism: φ(g) = e for all g ∈ G.

Solution: Let φ : G → H be a homomorphism. Then im φ is a subgroup of H. By
Lagrange’s theorem, | im φ| divides |H|.
By the first isomorphism theorem, we have

G/ ker φ ∼= im φ.

In particular, |G| = | ker φ|| im φ|. So, | im φ| also divides |G|.
Since gcd(|G|, |H|) = 1, and | im φ| divides both |G| and |H|, we conclude that
| im φ| = 1. Since e ∈ im φ, we must have im φ = {e}. Therefore φ(g) = e for all
g ∈ G.
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4. Let G be the group of isometries of the infinite pattern

... ...

(a) (5 points) Find the point group of G.

Solution: Recall that the point group G of G is the image of G under the
homomorphism

ta A 7→ A

from the group of all isometries to the group O2 of isometries fixing the origin.
Observe that G contains a reflection, namely the reflection through the verti-
cal line through any crest or trough. Therefore G contains the reflection in the
Y-axis.
Note that G contains a rotation by π (about the midpoint between a crest and
a trough). Hence G contains the rotation by π about the origin.
It is clear that G cannot contain a rotation by a (positive) angle smaller than π.
From what we proved in class, G is generated by the reflection in the Y-axis
and rotation by π. This group is D2, given by

G = D2 = {id, rx, ry, ρπ},

where rx is the rotation in the x-axis, ry is the rotation in the Y-axis, and ρπ

the rotation by π about the origin.
We can also see directly that G contains the reflection in the X-axis by observ-
ing that G contains a glide along the X-axis.
Alternatively, we can get G without using the above statement from class as
follows. Suppose ta A is an isometry of the pattern, where A ∈ O2. Note that
ta A must send the X-axis to the X-axis. Since ta sends a line to a parallel line,
A must send the X-axis to a horizontal line. But A preserves the origin. So
A must send the X-axis to itself. By orthogonality, A must send the Y-axis to
the Y-axis. Since A is orthogonal and preserves the two axes, it can only be
one of (

1 0
0 1

)
,
(
−1 0
0 1

)
,
(

1 0
0 −1

)
,
(
−1 0
0 −1

)
.

Now it is easy to check that all four possibilities are present (they come from
the identity, a vertical reflection, a horizontal glide, and a rotation by π of the
original pattern). Thus,

G =

{(
1 0
0 1

)
,
(
−1 0
0 1

)
,
(

1 0
0 −1

)
,
(
−1 0
0 −1

)}
.
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(b) (5 points) Let τ be the translation by one wave-length.
... ...

τ

Find the number of subgroups of G containing τ.

Solution: Any subgroup of G containing τ must contain the group 〈τ〉 gen-
erated by τ. By the definition of the point group G, we have a surjective
homomorphism

φ : G → G,

whose kernel consists of the translations in G. But the translations in G are
precisely the elements of 〈τ〉. So we get

G ∼= G/ ker φ = G/〈τ〉.

By the correspondence theorem for subgroups, the subgroups of G contain-
ing 〈τ〉 are in bijection with the subgroups of G. But G is isomorphic to the
Klein four group, which has 5 subgroups: {id}, {id, rx}, {id, ry}, {id, ρπ},
and {id, rx, ry, ρπ}. Hence there are five subgroups of G containing τ.
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5. Let G be the group of orientation preserv-
ing isometries of a molecule of SF6 (sulfur
hexafluoride). In coordinates, the central
S atom is (0, 0, 0) and the six F atoms are
(±1, 0, 0), (0,±1, 0) and (0, 0,±1).

(a) (5 points) Find the order of G.

Solution: Consider the action of G on the set of F atoms. All F atoms form
one orbit. The stabilizer of an F atom contains four elements, namely the
four rotations about the line joining that atom to S by angles 0, π/2, π and
3π/2. Remember that since we are only considering orientation preserving
isometries, we must not count reflections.
By the orbit-stabilizer formula, we get

|G| = |OF||GF| = 6 · 4 = 24.
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(b) (5 points) Show that there is a surjective homomorphism G → S3.

Solution: Let S = {X, Y, Z} be the set of the three coordinate axes. See that
any isometry in G must take an axis to another axis. We thus get an action of G
on S. Since S contains three elements, such an action gives a homomorphism

φ : G → S3.

We now check that φ is surjective. Consider the element g ∈ G which is the
rotation by π/2 about the positive Z-axis. Then φ(g) fixes the Z axis, but
switches the X and Y axes. In other words, φ(g) = (XY). Similarly, by taking
h which is the rotation by π/2 about the positive Y axis, we get φ(h) = (XZ).
Therefore, both (XY) and (XZ) are in im φ. Since any permutation of X, Y,
Z can be written as a product of (XY) and (XZ), and im φ is closed under
products, we get im φ = S3. That is, φ is surjective.
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(c) (3 points (bonus)) Identify G.

Solution: G ∼= S4.
To see why, we first find a homomorphism G → S4. Such a homomorphism
is equivalent to an action of G on a set with four elements. What set-of-four
can we see in the picture? We have 8 octants, given by the 8 possible sign
patterns of X, Y, and Z, namely (+,+,+), (+,+,−), etc, and we see that G
must act on the set of octants. But 8 is too many—we want 4.
Now we see that if an isometry sends an octant O to an octant O′, then it must
send the octant opposite to O to the octant opposite to O′ (the opposite octant
is obtained by switching all three signs). We can thus pair the 8 octants into 4
pairs of opposite octants. Setting

S = {Pairs of opposite octants},

we get an action of G on S, and thus a homomorphism

φ : G → S4.

Since both sides have the same number of elements, either surjectivity or in-
jectivity of φ implies that it is an isomorphism. I’ll leave it to you to check
this.
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Scratch Work
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Scratch Work
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