Modern Algebra 1: Midterm 2

November 11, 2013

- Answer the questions in the space provided.
- There are 5 questions. There is an additional bonus question at the end. Attempt it only if you have enough time.
- Give concise but adequate reasoning. You may use any statement from class or textbook without proof, but you must clearly state what you are using.
- At the end, there are some blank pages for scratch work. You may detach them.

Name: ____

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

1. (a) (4 points) State the definition of a normal subgroup.

Solution: A subgroup $H \subset G$ is called a *normal subgroup* if $gHg^{-1} = H$ for all $g \in G$. Equivalently, a subgroup $H \subset G$ is called a *normal subgroup* if gH = Hg for all $g \in G$.

(b) (3 points) Give an example of a normal subgroup of S_4 other than $\{e\}$ or S_4 . Explain why your example is a normal subgroup.

Solution: Consider the alternating group A_4 consisting of permutations in S_4 with sign +1. Then A_4 is a normal subgroup of S_4 because it is the kernel of the homomorphism sgn : $S_4 \rightarrow \{\pm 1\}$. Also, the set {id, (12)(34), (14)(23), (13)(24)} is a normal subgroup of S_4 , being the kernel of a homomorphism $S_4 \rightarrow S_3$.

(c) (3 points) Give an example of a subgroup of S_4 that is not a normal subgroup. Explain why your example is not a normal subgroup.

Solution: Consider the two element subgroup $H = {id, (12)}$. Taking g = (13), we get $g(12)g^{-1} = (23) \notin H$. So H is not a normal subgroup.

2. (10 points) Let *G* be the subgroup of $GL_2(\mathbf{R})$ defined by

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbf{R}, \ ac \neq 0 \right\}.$$

Let $H \subset G$ be the subgroup defined by a = c = 1. Prove that H is a normal subgroup of G and identify G/H.

Solution: Define a function
$$\phi \colon G \to \mathbf{R}^{\times} \times \mathbf{R}^{\times}$$
 by

$$\phi\begin{pmatrix}a&b\\0&c\end{pmatrix}=(a,c).$$

Since the matrix entries *a* and *c* can be any nonzero real numbers, ϕ is surjective. Let us check that ϕ is a homomorphism. Let

$$M_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$$
, and $M_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$.

Then

$$M_1 M_2 = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix}.$$

Therefore, we get

$$\phi(M_1M_2) = (a_1a_2, c_1c_2) = \phi(M_1)\phi(M_2).$$

Hence ϕ is a homomorphism.

Also,
$$\phi \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = (1, 1)$$
 if and only if $a = c = 1$. So, ker $\phi = H$.

Since the kernel of a homomorphism is a normal subgroup, we deduce that H is a normal subgroup of G.

By the first isomorphism theorem, we get

$$G/H = G/\ker\phi \cong \operatorname{im}\phi = \mathbf{R}^{\times} \times \mathbf{R}^{\times}$$

3. (10 points) Let *G* and *H* be finite groups whose orders are relatively prime (that is, gcd(|G|, |H|) = 1). Show that the only homomorphism $\phi: G \to H$ is the trivial homomorphism: $\phi(g) = e$ for all $g \in G$.

Solution: Let ϕ : $G \to H$ be a homomorphism. Then im ϕ is a subgroup of H. By Lagrange's theorem, $| \text{ im } \phi |$ divides |H|.

By the first isomorphism theorem, we have

 $G / \ker \phi \cong \operatorname{im} \phi$.

In particular, $|G| = |\ker \phi| |\operatorname{im} \phi|$. So, $|\operatorname{im} \phi|$ also divides |G|. Since gcd(|G|, |H|) = 1, and $|\operatorname{im} \phi|$ divides both |G| and |H|, we conclude that $|\operatorname{im} \phi| = 1$. Since $e \in \operatorname{im} \phi$, we must have $\operatorname{im} \phi = \{e\}$. Therefore $\phi(g) = e$ for all $g \in G$. 4. Let *G* be the group of isometries of the infinite pattern

(a) (5 points) Find the point group of *G*.

Solution: Recall that the point group \overline{G} of *G* is the image of *G* under the homomorphism

 $t_a A \mapsto A$

from the group of all isometries to the group O_2 of isometries fixing the origin. Observe that *G* contains a reflection, namely the reflection through the vertical line through any crest or trough. Therefore \overline{G} contains the reflection in the *Y*-axis.

Note that *G* contains a rotation by π (about the midpoint between a crest and a trough). Hence \overline{G} contains the rotation by π about the origin.

It is clear that *G* cannot contain a rotation by a (positive) angle smaller than π . From what we proved in class, \overline{G} is generated by the reflection in the *Y*-axis and rotation by π . This group is D_2 , given by

$$\overline{G} = D_2 = \{ \mathrm{id}, r_x, r_y, \rho_\pi \},\$$

where r_x is the rotation in the *x*-axis, r_y is the rotation in the *Y*-axis, and ρ_{π} the rotation by π about the origin.

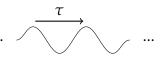
We can also see directly that \overline{G} contains the reflection in the *X*-axis by observing that *G* contains a glide along the *X*-axis.

Alternatively, we can get \overline{G} without using the above statement from class as follows. Suppose t_aA is an isometry of the pattern, where $A \in O_2$. Note that t_aA must send the X-axis to the X-axis. Since t_a sends a line to a parallel line, A must send the X-axis to a horizontal line. But A preserves the origin. So A must send the X-axis to itself. By orthogonality, A must send the Y-axis to the Y-axis to the Y-axis to the Y-axis to the orthogonal and preserves the two axes, it can only be one of

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Now it is easy to check that all four possibilities are present (they come from the identity, a vertical reflection, a horizontal glide, and a rotation by π of the original pattern). Thus,

$$\overline{G} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$



(b) (5 points) Let τ be the translation by one wave-length. Find the number of subgroups of *G* containing τ .

Solution: Any subgroup of *G* containing τ must contain the group $\langle \tau \rangle$ generated by τ . By the definition of the point group \overline{G} , we have a surjective homomorphism

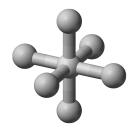
 $\phi: G \to \overline{G},$

whose kernel consists of the translations in *G*. But the translations in *G* are precisely the elements of $\langle \tau \rangle$. So we get

$$\overline{G} \cong G / \ker \phi = G / \langle \tau \rangle.$$

By the correspondence theorem for subgroups, the subgroups of *G* containing $\langle \tau \rangle$ are in bijection with the subgroups of \overline{G} . But \overline{G} is isomorphic to the Klein four group, which has 5 subgroups: {id}, {id, r_x }, {id, r_y }, {id, ρ_{π} }, and {id, r_x , r_y , ρ_{π} }. Hence there are five subgroups of *G* containing τ .

5. Let *G* be the group of orientation preserving isometries of a molecule of SF_6 (sulfur hexafluoride). In coordinates, the central *S* atom is (0,0,0) and the six *F* atoms are $(\pm 1,0,0)$, $(0,\pm 1,0)$ and $(0,0,\pm 1)$.



(a) (5 points) Find the order of *G*.

Solution: Consider the action of *G* on the set of *F* atoms. All *F* atoms form one orbit. The stabilizer of an *F* atom contains four elements, namely the four rotations about the line joining that atom to *S* by angles 0, $\pi/2$, π and $3\pi/2$. Remember that since we are only considering orientation preserving isometries, we must not count reflections.

By the orbit-stabilizer formula, we get

$$|G| = |O_F||G_F| = 6 \cdot 4 = 24$$

(b) (5 points) Show that there is a surjective homomorphism $G \rightarrow S_3$.

Solution: Let $S = \{X, Y, Z\}$ be the set of the three coordinate axes. See that any isometry in *G* must take an axis to another axis. We thus get an action of *G* on *S*. Since *S* contains three elements, such an action gives a homomorphism

$$\phi \colon G \to S_3.$$

We now check that ϕ is surjective. Consider the element $g \in G$ which is the rotation by $\pi/2$ about the positive *Z*-axis. Then $\phi(g)$ fixes the *Z* axis, but switches the *X* and *Y* axes. In other words, $\phi(g) = (XY)$. Similarly, by taking *h* which is the rotation by $\pi/2$ about the positive *Y* axis, we get $\phi(h) = (XZ)$. Therefore, both (XY) and (XZ) are in im ϕ . Since any permutation of *X*, *Y*, *Z* can be written as a product of (XY) and (XZ), and im ϕ is closed under products, we get im $\phi = S_3$. That is, ϕ is surjective.

(c) (3 points (bonus)) Identify G.

Solution: $G \cong S_4$.

To see why, we first find a homomorphism $G \rightarrow S_4$. Such a homomorphism is equivalent to an action of *G* on a set with four elements. What set-of-four can we see in the picture? We have 8 octants, given by the 8 possible sign patterns of *X*, *Y*, and *Z*, namely (+, +, +), (+, +, -), etc, and we see that *G* must act on the set of octants. But 8 is too many—we want 4.

Now we see that if an isometry sends an octant O to an octant O', then it must send the octant opposite to O to the octant opposite to O' (the opposite octant is obtained by switching all three signs). We can thus pair the 8 octants into 4 pairs of opposite octants. Setting

$$S = \{$$
Pairs of opposite octants $\},\$

we get an action of *G* on *S*, and thus a homomorphism

$$\phi \colon G \to S_4.$$

Since both sides have the same number of elements, either surjectivity or injectivity of ϕ implies that it is an isomorphism. I'll leave it to you to check this.

Scratch Work

Scratch Work