Modern Algebra 1: Midterm 1

October 2, 2013

- Answer the questions in the space provided.
- Give concise but adequate reasoning unless asked otherwise.
- You may use any statement from class, textbook, or homework without proof, but you must clearly write the statements you use.
- The exam contains 6 questions.
- At the end, there are some blank pages for scratch work. You may detatch them.

Question	Points	Score	
1	10		
2	8		
3	8		
4	8		
5	8		
6	8		
Total:	50		

Name: _____

1. (a) (4 points) State the definition of (i) a homomorphism (ii) the kernel of a homomorphism.

> **Solution:** A homomorphism from a group *G* to a group *H* is a function $\phi: G \to H$ such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$. The kernel of a homomorphism ϕ is defined by

$$\ker \phi = \{g \in G \mid \phi(g) = e\}.$$

(b) (3 points) Give examples of two non-isomorphic finite groups of the same order. State in one sentence why they are not isomorphic.

Solution: Z_6 and S_3 are both of order 6. They are not isomorphic because Z_6 is abelian but S_3 is not.

(c) (3 points) Find a homomorphism $\phi : \mathbb{Z}^+ \to \mathbb{S}_3$ whose kernel is $\mathbb{Z} \cdot 3$. No justification is needed.

Solution: Let p = (123). Define ϕ by $\phi(n) = p^n$.

2. (a) (4 points) Express the permutation (1234) as a product of transpositions.

Solution: We have		
	(1234) = (14)(13)(12).	

(b) (4 points) Find the sign of the permutation (1234)(56)(78). Justify your answer.

Solution: We use that sgn is a homomorphism and $sgn(\tau) = -1$ for all transpositions τ . We get sgn((1234)(56)(78)) = sgn((14)(13)(12)(56)(78)) = sgn((14)) sgn((13)) sgn((12)) sgn((56)) sgn((78)) $= (-1)^5$ = -1 3. The following is a partially filled multiplication table for a group. The element in row *i* and column *j* is *i* * *j*, where * is the group operation.

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	3	1	5		4
3	3	1	2	6		5
4	4	6	5			2
5	5					3
6	6	5	4	3	2	

(a) (4 points) What must be the values of 6 * 6 and 5 * 2? Give reasons.

Solution: Note that 1 is the identity. Since 6 must have an inverse, and none of 2, ..., 5 is its inverse, we must have 6 * 6 = 1. Since 5 = 2 * 4, we get 5 * 2 = (2 * 4) * 2= 2 * (4 * 2) by associativity = 2 * 6= 4

(b) (4 points) Find a subgroup of order 2 and a subgroup of order 3. No justification is necessary.

Solution: Subgroup of order 2: $\{1,6\}$. Subgroup of order 3: $\{1,2,3\}$. 4. (8 points) Prove that a group *G* is cyclic if and only if there exists a surjective homomorphism $\phi \colon \mathbb{Z}^+ \to G$.

Solution: Suppose *G* is cyclic. Let $x \in G$ be a generator. Then

$$G = \langle x \rangle = \{ x^n \mid n \in \mathbf{Z} \}.$$

Define ϕ : **Z**⁺ \rightarrow *G* by $\phi(n) = x^n$. Then

$$\phi(m+n) = x^{m+n} = x^m x^n = \phi(m)\phi(n).$$

So ϕ is a homomorphism. Since

$$\operatorname{im}(\phi) = \{\phi(n) \mid n \in \mathbf{Z}\} = \{x^n \mid n \in \mathbf{Z}\} = G,$$

we see that ϕ is surjective.

Conversely, let ϕ : $\mathbb{Z}^+ \to G$ be a surjective homomorphism. Let $x = \phi(1)$. Since ϕ is a homomorphism, we have $\phi(n) = x^n$ for all $n \in \mathbb{Z}$. So, we get

$$\operatorname{im}(\phi) = \{\phi(n) \mid n \in \mathbf{Z}\} = \{x^n \mid n \in \mathbf{Z}\} = \langle x \rangle.$$

Since ϕ is surjective, we have $im(\phi) = G$. Therefore $G = \langle x \rangle$ is cyclic.

- 5. Which of the following are subgroups of $GL_2(\mathbf{R})$? Justify your answer.
 - (a) (4 points) $G = \{M \in GL_2(\mathbf{R}) \mid \det M > 0\}$

Solution: *G* is a subgroup. We check the three conditions.

- 1. Since $det(I_2) = 1 > 0$, we have $I_2 \in G$.
- 2. If $A, B \in G$, then det(A) > 0 and det(B) > 0. Then det(AB) = det(A) det(B) > 0. Hence $AB \in G$.
- 3. If $A \in G$, then det(A) = 0. Then $det(A^{-1}) = det(A)^{-1} > 0$. Hence $A^{-1} \in G$.

(b) (4 points) $H = \{M \in GL_2(\mathbf{R}) \mid M = M^{-1}\}$

Solution: *H* is *not* a subgroup—it is not closed under multiplication. Consider $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $A = A^{-1}$ and $B = B^{-1}$, so both *A* and *B* are in *H*. But $AB = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $(AB)^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, so $AB \neq (AB)^{-1}$. Therefore, *AB* is not in *H*. 6. (8 points) Let *G* and *H* be two groups, $x \in G$ an element of order *m* and $y \in H$ an element of order *n*. Find, with proof, the order of (x, y) in $G \times H$ in terms of *m* and *n*.

Solution: We claim that the order of (x, y) is lcm(m, n).

For the proof, notice that $(x, y)^d = (e_G, e_H)$ if and only if $x^d = e_G$ and $y^d = e_H$. Since the order of x is m, we know that $x^d = e_G$ if and only if m divides d. Similarly, $y^d = e_H$ if and only if n divides d. Therefore,

$$(x, y)^d = (e_G, e_H)$$
 if and only if both *m* and *n* divide *d*. (1)

We know that the order of (x, y) is the the smallest positive integer d such that $(x, y)^d = (e_G, e_H)$. By (1), the order of (x, y) is the smallest positive integer multiple of m and n, which by definition is lcm(m, n).

Scratch Work

Scratch Work

Scratch Work