
SUBGROUPS OF A FINITE CYCLIC GROUP

This is essentially a detailed solution to problem 3 on homework 3. I am writing it out because the result
is important and the suggested proof is tricky (although very elegant).

Let G be a cyclic group of order n and let x ∈ G be a generator. As usual, we denote by e the identity
element in G. Let H ⊂ G be a subgroup. Define S ⊂ Z by

S = {i ∈ Z | xi ∈ H}.

Proposition 1. S is a subgroup of Z+.

Proof. We have x0 = e and e ∈ H, since H is a subgroup. Since x0 ∈ H, we get that 0 ∈ S. Next, if a, b ∈ S,
then xa, xb ∈ H. But then xa+b = xaxb ∈ H, since H is closed under products. Therefore a + b ∈ S. Finally,
if a ∈ S, then xa ∈ H. But then x−a = (xa)−1 ∈ H, since H is closed under taking the inverse. Therefore
−a ∈ S. Thus, S contains 0 and is closed under addition and taking negatives. Therefore, it is a subgroup
of Z+ �

Proposition 2. H = 〈xd〉 for some d that divides n.

Proof. Since S ⊂ Z+ is a subgroup, we know that S = Zd for some d. Furthermore, since xn = e and e ∈ H,
we see that n ∈ S. Therefore, d divides n.

By the definition of S, we get
H = {xi | i ∈ S}.

Since S = Zd, we conclude that H = {xid | i ∈ Z} = 〈xd〉. �

Proposition 3. Let a be a positive integer. The order of xa is lcm(a, n)/a. In particular, if a divides n, then the order
of xa is n/a.

Proof. Let k be the order of xa. Then k is the smallest positive integer such that (xa)k = e. Recall that
(xa)i = xai and xai = e if and only if n divides ai. Therefore, ak is the smallest positive multiple of a which
is also a multiple of n. In other words, ak = lcm(a, n) and hence k = lcm(a, n)/a.

If a divides n, then lcm(a, n) = n and hence k = n/a. �

Theorem 4. Every subgroup of G is cyclic of order dividing n. Furthermore, for every positive integer a dividing n,
there is a unique subgroup of G of order a.

Proof. By Proposition 2, every subgroup of G is of the form 〈xd〉 for some d dividing n. By Proposition 3,
the order of such a group is n/d, which divides n. This proves the first sentence.

Let a be a positive integer dividing n, say n = ab. Then, by Proposition 3, the subgroup 〈xb〉 of G has
order a. This proves that for every positive integer a dividing n, there is a subgroup of G of order a.

Finally, let H and H′ be two subgroups of G of the same order. By Proposition 2, H = 〈xd〉 and H′ = 〈xd′〉
for some d and d′ dividing n. By Proposition 3, the order of H is n/d and the order of H′ is n/d′. Since the
orders are equal, we conclude that d = d′ and hence H = H′. This proves that G has a unique subgroup of
a given order. �

Example 5. Let us take G = 〈x〉 to be of order 12. Then all the subgroups of G are as follows:
• Order 1: 〈x12〉 = {x0}
• Order 2: 〈x6〉 = {x0, x6}
• Order 3: 〈x4〉 = {x0, x4, x8}
• Order 4: 〈x3〉 = {x0, x3, x6, x9}
• Order 6: 〈x2〉 = {x0, x2, x4, x6, x8, x10}
• Order 12: 〈x〉 = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
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