SUBGROUPS OF A FINITE CYCLIC GROUP

This is essentially a detailed solution to problem 3 on homework 3. I am writing it out because the result is important and the suggested proof is tricky (although very elegant).

Let *G* be a cyclic group of order *n* and let $x \in G$ be a generator. As usual, we denote by *e* the identity element in *G*. Let *H* ⊂ *G* be a subgroup. Define *S* ⊂ **Z** by

$$
S = \{ i \in \mathbb{Z} \mid x^i \in H \}.
$$

Proposition 1. *S is a subgroup of* **Z** +*.*

Proof. We have $x^0 = e$ and $e \in H$, since H is a subgroup. Since $x^0 \in H$, we get that $0 \in S$. Next, if $a, b \in S$, then x^a , $x^b \in H$. But then $x^{a+b} = x^a x^b \in H$, since H is closed under products. Therefore $a + b \in S$. Finally, if *a* ∈ *S*, then x^a ∈ *H*. But then $x^{-a} = (x^a)^{-1}$ ∈ *H*, since *H* is closed under taking the inverse. Therefore −*a* ∈ *S*. Thus, *S* contains 0 and is closed under addition and taking negatives. Therefore, it is a subgroup of Z^+ +

Proposition 2. $H = \langle x^d \rangle$ for some d that divides n.

Proof. Since $S \subset \mathbb{Z}^+$ is a subgroup, we know that $S = \mathbb{Z}d$ for some *d*. Furthermore, since $x^n = e$ and $e \in H$, we see that $n \in S$. Therefore, *d* divides *n*.

By the definition of *S*, we get

Since $S = Zd$, we conclude that $H =$

$$
H = \{x^i \mid i \in S\}.
$$

$$
\{x^{id} \mid i \in \mathbb{Z}\} = \langle x^d \rangle.
$$

Proposition 3. *Let a be a positive integer. The order of x^a is* lcm(*a*, *n*)/*a. In particular, if a divides n, then the order of x^a is n*/*a.*

Proof. Let *k* be the order of x^a . Then *k* is the smallest positive integer such that $(x^a)^k = e$. Recall that $(x^a)^i = x^{ai}$ and $x^{ai} = e$ if and only if *n* divides *ai*. Therefore, *ak* is the smallest positive multiple of *a* which is also a multiple of *n*. In other words, $ak = \text{lcm}(a, n)$ and hence $k = \text{lcm}(a, n) / a$. If *a* divides *n*, then $\text{lcm}(a, n) = n$ and hence $k = n/a$.

Theorem 4. *Every subgroup of G is cyclic of order dividing n. Furthermore, for every positive integer a dividing n,*

there is a unique subgroup of G of order a.

Proof. By [Proposition 2,](#page-0-0) every subgroup of *G* is of the form $\langle x^d \rangle$ for some *d* dividing *n*. By [Proposition 3,](#page-0-1) the order of such a group is n/d , which divides *n*. This proves the first sentence.

Let *a* be a positive integer dividing *n*, say $n = ab$. Then, by [Proposition 3,](#page-0-1) the subgroup $\langle x^b \rangle$ of *G* has order *a*. This proves that for every positive integer *a* dividing *n*, there is a subgroup of *G* of order *a*.

Finally, let *H* and *H*^{*I*} be two subgroups of *G* of the same order. By [Proposition 2,](#page-0-0) $H = \langle x^d \rangle$ and $H' = \langle x^{d'} \rangle$ for some *d* and *d'* dividing *n*. By [Proposition 3,](#page-0-1) the order of *H* is *n/d* and the order of *H'* is *n/d'*. Since the orders are equal, we conclude that $d = d'$ and hence $H = H'$. This proves that *G* has a unique subgroup of a given order. \Box

Example 5. Let us take $G = \langle x \rangle$ to be of order 12. Then all the subgroups of *G* are as follows:

- Order 1: $\langle x^{12} \rangle = \{x^0\}$
- Order 2: $\langle x^6 \rangle = \{x^0, x^6\}$
- Order 3: $\langle x^4 \rangle = \{x^0, x^4, x^8\}$
- Order 4: $\langle x^3 \rangle = \{x^0, x^3, x^6, x^9\}$
- Order 6: $\langle x^2 \rangle = \{x^0, x^2, x^4, x^6, x^8, x^{10}\}\$
- Order 12: $\langle x \rangle = \{x^0, x^1, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}, x^{11}\}\$