Mathematics W4041x Introduction to Modern Algebra

Practice Final Exam

December 16, 2010

- 1. State the classification of finitely generated abelian groups.
- **2.** If #G = 20 and $S \subset G$ with #S = 12, must $\langle S \rangle = G$? Why or why not?
- 3. What are the possible numbers of Sylow 3-subgroups in a group of order 210?
- **4.** Let S be a set, PS its power set. For $A, B \in PS$, say $A \sim B$ if there exists a bijection $A \rightarrow B$. Prove that \sim is an equivalence relation.
- 5. Can a group of order p^n , where p is prime and n > 1, ever be simple? Why or why not?
- 6. Classify the groups of order 21 up to isomorphism. How many are there?
- 7. For each prime p dividing $\#\Sigma_4$, describe the Sylow p-subgroup of Σ_4 in terms of familiar groups.
- 8. Prove that the quaternion group Q is *not* isomorphic to a semidirect product except in a trivial fashion as $Q \rtimes 1$ or $1 \rtimes Q$.
- **9.** If G and H are finite simple groups and $K \lhd G \times H$, prove that K is isomorphic to 1, G, H, or $G \times H$.
- 10. Prove that if $\sigma, \tau \in \Sigma_n$, then $\sigma\tau$ and $\tau\sigma$ factor into disjoint cycles of the same sizes.
- 11. (a) If $N \triangleleft G$, prove that conjugation defines an action of G on N by automorphisms. (b) If $N \triangleleft G$, #N = 5, and #G is odd, prove that $N \subset ZG$, the center of G.
- 12. Prove that a finite abelian group whose order is not divisible by the square of any prime must be cyclic.
- **13.** If G is a finite group with H < G and $N \lhd G$, and if [G : N] and #H are relatively prime, prove that H < N.
- 14. A pentagonal prism is the set of $(x, y, z) \in \mathbb{R}^3$ such that (x, y) lies in a regular pentagon and $z \in [0, 1]$, as sketched below.

(a) Describe, without proof, the group of rotations of this prism.

(b) How many inequivalent ways are there to paint the 7 faces of this prism with 3 colors (blue, red, purple)?

