This homework is due by 5pm on August 23.

(1) (Affine charts) Let $Q = V(XY - ZW) \subset \mathbb{P}^3$. Write the four affine charts for Q and the transition functions between one pair of them.

(2) (Projective closure) Think of \mathbb{A}^n as the open subset of \mathbb{P}^n where the last homogeneous coordinate is non-zero. Find (with proof!) the closure in \mathbb{P}^n of the following varieties in \mathbb{A}^n, and identify the points at infinity in the closure.

(a) $V(x^2 + y^2 - 1) \subset \mathbb{A}^2$,
(b) $V(y - x^2, z - x^3) \subset \mathbb{A}^3$.

(The general statement is as follows. The closure \overline{X} is given by

$$\overline{X} = V(\{p^\text{hom} \mid p \in I(X)\}),$$

where p^hom is the homogenization of p with respect to last coordinate variable. You should be able to prove this, but you do not have to for this homework.)

(3) (5 points define a conic) Let $X \subset \mathbb{P}^2$ be a set of 5 points, no 3 on a line. Prove that there is a unique conic containing X.

(4) (Pencil of conics) Let F and G be irreducible homogeneous degree 2 polynomials in $k[X, Y, Z]$. For each $[s : t] \in \mathbb{P}^1$, we get a conic $Q_{s,t} = V(sF + tG)$ (Such a family of conics is called a “pencil”). Suppose $V(F)$ and $V(G)$ intersect in 4 distinct points. Prove that exactly three members of the pencil are degenerate, and describe them in terms of the 4 points of intersection of $V(F)$ and $V(G)$.

Glossary of terms in projective geometry.

(1) A line in \mathbb{P}^2 is the vanishing set of a homogeneous linear polynomial. Easy linear algebra shows that any two distinct lines in \mathbb{P}^2 intersect in a unique point, and any two distinct points in \mathbb{P}^2 lie on a unique line. In \mathbb{P}^3, the vanishing set of homogeneous linear polynomial is called a plane; in higher dimensions, it is called a hyperplane.

(2) A conic in \mathbb{P}^2 is the vanishing set of a homogeneous quadratic polynomial. A conic is non-degenerate if the defining polynomial is irreducible, and degenerate otherwise. A degenerate conic is a union of two lines.

(3) When we think of $\mathbb{A}^n \subset \mathbb{P}^n$ as the subset where the last coordinate is non-zero (say), the complement is called the hyperplane at infinity and its points are called the points at infinity.