ALGEBRAIC GEOMETRY: WORKSHOP 2

1. HOW TO DO THE LAST PROBLEM ON HW1 FOR ARBITRARY k?

For simplicity, let us take \(n = 2 \), and recall the proof for \(k = \mathbb{C} \). Let \(D \subset \mathbb{A}^{2 \times 2} \) be the set of diagonalizable matrices and \(B \subset \mathbb{A}^{2 \times 2} \) its complement. We show that neither \(D \) nor \(B \) are closed. To show that \(D \) is not closed, consider the family of matrices

\[
M_t = \begin{pmatrix} 1 & 1 \\ 0 & t \end{pmatrix}.
\]

See that \(M_t \in D \) for \(t \neq 1 \), but \(M_1 = \lim_{t \to 1} M_t \notin D \), which shows that \(D \) is not closed in the Euclidean topology, and hence also not in the Zariski topology. Similarly, by considering

\[
N_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix},
\]

we see that \(B \) is not closed.

We mimic the same proof algebraically. Instead of limits, we use more basic topology (remember the Zariski topology is not Hausdorff!). The role of the family \(M_t \) parametrised by \(t \in \mathbb{R} \) is played by a similar family \(M_t \) parametrised by \(t \in \mathbb{A}^1 \).

Consider the map \(M: \mathbb{A}^1 \to \mathbb{A}^{2 \times 2} \) given by

\[
M: t \mapsto \begin{pmatrix} 1 & 1 \\ 0 & t \end{pmatrix}.
\]

Since \(M \) is defined by polynomial functions, it is continuous in the Zariski topology. Note that \(M^{-1}(D) = \mathbb{A}^1 \setminus \{1\} \) is not Zariski closed. Therefore, \(D \) is not Zariski closed. Similarly, we show that \(B \) is not Zariski closed.

2. MORE EXERCISES WITH IDEALS AND THEIR VANISHING LOCI.

(1) Let \(k \) be an algebraically closed field of characteristic not equal to 2. For \(c \in k \), let \(Z_c \) be the algebraic subset of \(\mathbb{A}^2_k \) defined by \(x^2 + y^2 = 1 \) and \(x = c \). Find \(I(Z_c) \) for all values of \(c \in k \) (Caution: Pay close attention to two special values of \(c \)).

(2) Draw a picture of the special and the general situation by taking \(k = \mathbb{R} \)

(3) What happens if the characteristic of \(k \) is 2?
3. **THE ZARISKI TOPOLOGY IS NOT HAUSSDORFF.**

Let k be an algebraically closed field. Let us show that the Zariski topology on \mathbb{A}^n_k is not Hausdorff. In fact, let us show that any two non-empty subset of \mathbb{A}^n_k have a non-empty intersection.

(1) For $n = 1$, recall that the Zariski topology is the finite complement topology, and conclude.

(2) In general, show that every Zariski open $U \subset \mathbb{A}^n_k$ contains a *basic open*, namely an open set of the form

$$D(f) = \{ x \mid f(x) \neq 0 \}.$$

(3) Show that $D(f) \cap D(g) = D(fg)$, and conclude that any two non-empty opens must intersect.