Regular functions and regular maps

\(k = \text{Alg. closed field} \)

Recall from last time:

- \(X \subset \mathbb{A}^n_k \) affine algebraic set.
- \(f : X \to k \) regular if it is the restriction of a polynomial function.

\[
k[X] = \text{\(k \)-algebra of regular functions on } X
\]
\[
\cong k[x_1, \ldots, x_n] / I(X).
\]
\[
= \text{Finitely generated nilpotent free } \ k\text{-algebra.}
\]

Observe - Any finitely generated nilpotent free \(k \)-algebra is of the form \(k[X] \) for some \(X \).

Why? Let \(A \) be such an algebra.

Let \(a_1, \ldots, a_n \in A \) be a set of generators.

Then we have a map

\[
\phi : k[x_1, \ldots, x_n] \to A
\]
\[
a_i \mapsto a_i.
\]

This map is surjective because \(\{a_i\} \) generates \(A \). By the first iso thm

\[
A \cong k[x_1, \ldots, x_n] / I
\]
where \(I = \ker \varphi. \)

Since \(A \) is nilpotent free, \(I \) is radical.

Then take \(X = V(I) \).

By the Nullstellensatz,
\[
\begin{align*}
\kappa[x] &= \kappa[x_1, \ldots, x_n] / I(x) \\
&= \kappa[x_1, \ldots, x_n] / I \\
&\cong A
\end{align*}
\]

\(\qed \)

As a result we have the dictionary.

\underline{Algebra} \hspace{2cm} \underline{Geometry}

- Finitely generated reduced \(k \)-alg. \(A \)
 - Alg of regular functions on affine alg set \(X \).
- Max ideal \(\mathfrak{m} \) \(A \)
 - Point of \(X \).
- Given \(J \subset A \)
 - Given \(J \subset \kappa[x] \)
 \[
 V(J) = \{ m \mid m \supseteq J \}.
 \]
 \[
 V(J) = \{ x \mid f(x) = 0 \} \quad \forall f \in J \}
 \]

In particular \(V(J) = \emptyset \) if \(J = (0) \).
Regular Maps

\(X \subset \mathbb{A}^n, Y \subset \mathbb{A}^m \) affine algebraic sets.
\(f : X \to Y \) is a regular function if

\[\exists f_1, \ldots, f_m \in \mathbb{k}[X] \quad \text{such that} \]

\[f(x) = (f_1(x), \ldots, f_m(x)) \quad \forall x \in X. \]

Equivalently, if there exist \(F_1, \ldots, F_m \)
in \(\mathbb{k}[X_1, \ldots, X_n] \) such that

\[f(x) = (F_1(x), \ldots, F_m(x)) \quad \forall x \in X. \]

Ex 1: \(f : X \to \mathbb{A}^1 \) regular map

\(\iff \) \(f \) is a regular function.

Ex 2: \(L : \mathbb{A}^n \to \mathbb{A}^m \) linear transform

is regular.

Ex 3: Projections \(\mathbb{A}^n \to \mathbb{A}^1 \)

Ex 4: Compositions of regular maps
are regular.
Ex 5: \(X \subseteq A^n \) Zariski closed. The inclusion \(X \rightarrow A^n \) is regular.

Def: A regular \(f : X \rightarrow Y \) is an isomorphism if there exists a regular inverse map \(j : Y \rightarrow X \).

Ex 6: \(X = A^1 \)
\(Y = \{ y^2 - x^3 = 0 \} \subseteq A^2 \)

\(f : X \rightarrow Y \)
\(t \mapsto (t^2, t^3) \) is a regular bijection but not an isomorphism!
How does one see that it's not an iso? Wait and see....

Let \(\varphi : X \rightarrow Y \) be any map.
Then we get an induced map

\(\varphi^* : \text{Functions on } Y \rightarrow \text{Functions on } X \)
\(f \mapsto f \circ \varphi \).
Proposition: \(\varphi \) is regular if and only if \(\varphi^* \) sends regular functions on \(Y \) to regular functions on \(X \).

Proof: Suppose \(\varphi \) is regular. If \(f: Y \to A^1 \) is a regular function then \(\varphi \circ f \) is regular because composition of regular maps is regular.

Conversely, suppose \(\varphi^*(f) \) is regular for every regular \(f \). Let \(\varphi(x) = (\varphi_1(x), \ldots, \varphi_m(x)) \) we want to show each \(\varphi_i(x) \) is regular. But \(\varphi_i = \varphi^*(x_i) \) and \(x_i \in k[Y] \) is regular.

Thus a regular map \(\varphi: Y \to X \) induces a \(k \)-alg. hom \(\varphi^*: k[Y] \to k[X] \).

Proof: Let \(\alpha: k[Y] \to k[X] \) be a \(k \)-alg. hom. Then there is a unique regular \(\varphi: X \to Y \) such that \(\alpha = \varphi^* \).

Proof: Suppose \(Y = V(\mathcal{F}) \subset A^m \) and \(X = V(\mathcal{I}) \subset A^n \).
Then \(k[Y] = k[y_1, \ldots, y_m] / J \)
\(k[X] = k[x_1, \ldots, x_m] / I. \)

Let \(\phi_i = \alpha(y_i) \in k[x] \)

Consider \(\phi := (\phi_1, \ldots, \phi_m) : X \rightarrow \mathbb{A}^m. \)

Let us check that \(\phi \) maps \(X \) to \(Y. \)

To see this, we must show that
\[
 f(\phi_i(x), \ldots, \phi_m(x)) = 0 \quad \forall \ x \in X, \quad f \in J.
\]

But
\[
 f(\phi_1(x), \ldots, \phi_m(x)) \\
 = f(\alpha(y_1), \ldots, \alpha(y_m)) \\
 = \alpha(f(y_1, \ldots, y_m)) \\
 = \alpha(0) = 0.
\]

So \(\phi : X \rightarrow Y. \) Note \(\phi^*(y_i) = \alpha(y_i) \)

so \(\phi^* = \alpha \) because \(y_i \) generate \(k[Y]. \)

Finally, it \(\phi : X \rightarrow Y \) is such that
\(\phi^* = \alpha \), and \(\phi = (\phi_1, \ldots, \phi_m) \), then
\(\phi^*(y_i) = \phi_i = \alpha(y_i) \), so there is only one possible \(\phi. \)

\(\square. \)
Conseq: $X \rightarrow k[X]$ defines an equivalence of categories

\[
\begin{align*}
\{ & \text{Affine alg} \quad ? \quad \} \quad \longrightarrow \quad \{ & \text{Fin gen reduced} \\
& k\text{-algebras} \quad \text{with } k\text{-alg.} \\
& \text{homs} \quad \} \\
\{ & \text{sets with} \\
& \text{regular maps} \quad \} \\
\end{align*}
\]

Ex:

\[
X = \mathbb{A}^1 \\
y = V(y^2 - x^3) \subset \mathbb{A}^2
\]

\[
k[X] = k[t] \\
k[Y] = k[x] / (y^2 - x^3)
\]

\[
\varphi : X \rightarrow Y \\
\varphi(t) = (t^2, t^3)
\]

\[
\varphi^* : k[Y] \rightarrow k[X] \\
x \mapsto t^2 \\
y \mapsto t^3.
\]

\[\varphi^* \text{ is not an isomorphism!}
\]

Any element in the image of φ^* has vanishing linear term.
Def: Affine algebraic variety
 = Affine algebraic set.

We eventually want to define more general algebraic varieties. The first step is

Def: Quasi-affine varieties = Zariski open subsets of affine alg. var.

We now define regular functions and regular maps for quasi-affines.

Def: $U \subset X$ open.
 $f: U \rightarrow k$ regular if the following holds - for $x \in U$ there exists an open U_x containing x & $F_x, G_x \in k[x]$ such that G_x is nowhere 0 on U_x and
 $f = F_x / G_x$ on U_x.

Example: $U = \mathbb{A}^1 - \{0\} \subset \mathbb{A}^1$.
Then $\frac{1}{t}$ is regular on U.
2) \[X = \{ xy - z^2 = 0 \} \subseteq \mathbb{A}^3 \]
\[U = X - \{ (x,0,0) \mid x \in k \} \]
\[f = \frac{x}{z} \text{ or } \frac{z}{y} \text{ is regular on } U. \]

Before we proceed, we must show that we get the same notion of regular as before for affines.

\[\text{Prop: Let } X \subset \mathbb{A}^n \text{ be Zar. closed.} \]
\[f: X \rightarrow k \text{ is regular in the new sense (locally poly/poly)} \iff \text{ it is regular in the old sense (globally a polynomial).} \]

\[\text{Pf: Let } x \in X. \text{ There exist } U_x, F_x, G_x \]
\[\text{such that } f = \frac{F_x}{G_x} \text{ on } U_x \text{ and } x \in U_x. \]
\[\text{Say } U_x = X - V(I_x). \text{ Take } H_x \in I_x \]
\[\text{such that } H_x(x) \neq 0. \text{ Replace } U_x \]
\[\text{by } U'_x = X - V(H_x) \subseteq U_x. \]
\[F_x \text{ by } A_x = F_x H_x \quad \text{and} \]
\[G_x \text{ by } B_x = G_x H_x. \]
Then \(f = \frac{A_x}{B_x} \) on \(U'_x \),

ac \(U'_x \) and \(A_x, B_x = 0 \) on the complement of \(U'_x \).

Now \(\{ B_x \} \) have no common zero, so by the Nullstellensatz, they generate the unit ideal \(\mathfrak{a} \) of \(k[X] \). Write

\[1 = C_1 B_{x_1} + \ldots + C_n B_{x_n} \]

where \(C_i \in k[X] \).

Multiply both sides by \(f \)

\[f = \sum C_i B_{x_i} \cdot f \]

and note

\[B_{x_i} f = A_{x_i} \text{ on } X \]

so

\[f = \sum C_i A_{x_i} \in k[X] \]

\(\square \).

Having defined regular functions, we can define regular maps just as before.

Ref: \(U \subseteq \mathbb{A}^n \), \(V \subseteq \mathbb{A}^m \), opens in closed.

\(\varphi : U \rightarrow V \) regular map

\(\varphi = (\varphi_1, \ldots, \varphi_m) \) where \(\varphi_i \) is reg. fun.
Obs: ① Pull backs of reg. fun under reg maps are regular
② Compositions of reg. fun are regular

Example (Important).

\[X = \mathbb{A}^1 - \{0\} \]
\[Y = \mathbb{V}(xy - 1) \subset \mathbb{A}^2. \]

\[\varphi : Y \rightarrow X \]
\[(x, y) \mapsto x. \]

\[\psi : X \rightarrow Y \]
\[x \mapsto (x, \frac{1}{x}) \]

Regular

\[\varphi \circ \psi = \text{id}, \quad \psi \circ \varphi = \text{id}. \]
So \(X \cong Y. \)

That is the quasi-affine \(X \) is actually affine!

Ring of reg. fun on \(X = \)
\[k[x, y]/(xy - 1) \cong k[t, t'] / (tk(t)) \]

by \(x \mapsto t, y \mapsto t'. \)
Example (Important)

\[X = \bigcup_{i=1}^{n} V(f_i), \]
\[Y = V(y f-1) \subset \bigcup_{i=1}^{n+1} \]

\[\phi : Y \to X \quad \text{regular} \]
\[(x, y) \mapsto x \]

\[\psi : X \to Y \quad \text{regular} \]
\[x \mapsto (x, \frac{1}{f(x)}) \]

\[\phi \circ \psi = \text{id} \quad \psi \circ \phi = \text{id}. \]

So \[X \cong Y. \]

hence

\[k[X] = \frac{k[x_1, \ldots, x_n, y]}{(f(x)y-1)} \]

\[\cong \left \{ \frac{p}{f^m} \mid p \in k[x_1, \ldots, x_n], m \geq 0 \right \} \]

\[\subset k(x_1, \ldots, x_n, y) \]

by the map \[x_i \mapsto x_i, \quad y \mapsto \frac{1}{f}. \]
A non-affine variety

\[X = \mathbb{A}^2 \setminus \{0\} \]

We have a map
\[k[x] \to k(x,y) \]
\[f \mapsto \frac{f}{G} \]
where \(f = E \) on some open \(U \) in \(X \).

The choice of \(U \) does not matter —
First any two opens in \(X \) intersect
\(\Rightarrow \) any open is dense.
So if \(f = \frac{F_1}{G_1} \) on \(U_1 \)

\[= \frac{F_2}{G_2} \] on \(U_2 \)

then \(G_2 F_1 - F_1 G_2 = 0 \) on \(U_1 \cap U_2 \)

\[= 0 \] on \(\mathbb{A}^2 \)
by continuity. So \(F_1 / G_1 = F_2 / G_2 \) in \(k(x,y) \).

Write \(X = \mathbb{A}^2 - V(x) \cup \mathbb{A}^2 - V(y) \)
Now the reg. func. on \(\mathbb{A}^2 - V(x) \) in \(k(x,y) \) are \(\frac{1}{x^a} \frac{1}{y^b} \)
Similarly reg. func. on \(\mathbb{A}^2 - V(y) \) are
\{ \frac{f}{y^m} \}.

A reg fun on X must lie in the intersection but the intersection

$$\left\{ \frac{f}{x^n} \big| f \in \mathbb{k}[x,y] \right\} \cap \left\{ \frac{f}{y^m} \big| f \in \mathbb{k}[x,y] \right\}$$

$$\subset \mathbb{k}[x,y].$$

So $\mathbb{k}[X] = \mathbb{k}[x,y] = \mathbb{k}[x^2].$

To conclude that X is not affine, see that the ideal $(x,y) \subset \mathbb{k}[X]$ is non unit but $V(x,y) = \emptyset$ in X. This does not happen for affine X.

\[\square\]