You should be able to do all the questions on all the homeworks and all the workshop questions. In addition, here are more practice questions.

1. Prove that \(\mathbb{P}^1 \times \mathbb{P}^1 \) and \(\mathbb{P}^2 \) are birational but not isomorphic.
2. Prove that \(\mathbb{P}^1 \times \mathbb{P}^3 \) and \(\mathbb{P}^2 \times \mathbb{P}^2 \) are birational but not isomorphic.
3. Let \(X = V(xy, yz) \subset \mathbb{A}^3 \). Decompose \(X \) into irreducible components. What are their dimensions?
4. Let \(X \) be an irreducible quasi-projective variety. State the definition of the dimension of \(X \). Show that \(X \) has subvarieties of every dimension from 0 to \(\dim X \).
5. Prove that a closed subset \(X \subset \mathbb{A}^n \) is irreducible if and only if the ideal \(I(X) \subset k[x_1, \ldots, x_n] \) is prime.
6. Show that any birational automorphism of \(\mathbb{P}^1 \) is a projective linear transformation.
7. For every \(n \geq 2 \), give an example of a birational isomorphism \(\mathbb{P}^n \to \mathbb{P}^n \) that does not extend to a regular map.
8. Let \(M \) be an \(n \times n \) matrix. A vector \(v \in k^n \) is called a generator for \(M \) if the set \(v, Mv, M^2v, \ldots, M^{n-1}v \) spans \(k^n \). For example, if \(M \) is the diagonal matrix with distinct entries \(a_1, \ldots, a_n \), then the vector \([1, \ldots, 1] \) is a generator. Let \(U \subset \mathbb{P} \text{Mat}_{n \times n} \) be the set (up to scaling) of matrices that admit a generator. Prove that \(U \) is Zariski open.

(Hint: Consider the space of pairs \((M, v)\) such that \(v \) is not a generator of \(M \).)
9. Let \(\phi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^{(n+1)(b+1)-1} \) be the composite \(\tau = \sigma \circ (\nu_a \times \nu_b) \), where the map \(\nu_m: \mathbb{P}^1 \to \mathbb{P}^m \) is the degree \(m \) Veronese and \(\sigma: \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{(m+1)(n+1)-1} \) is the Segre map.
 (a) Write the map \(\tau \) explicitly: where does \(([X : Y], [U : V]) \) go?
 (b) Let \(F \subset k[X, Y, U, V] \) be bihomogeneous of bidegree \(a, b \) with \(a, b > 0 \). Show that \(\mathbb{P}^1 \times \mathbb{P}^1 \setminus \mathbb{V}(F) \) is affine.
10. Find all singular points on the curve \(V(X^3Y - Z^4) \subset \mathbb{P}^2 \).
11. Let \(X \subset \mathbb{P}^n \) be a closed subvariety. Fix positive integers \(r \) and \(l \). Let \(\Sigma \subset \text{Gr}(r, n+1) \) be the set of \(\Lambda \) such that \(\dim(\mathbb{P}\Lambda \cap X) \geq l \). Prove that \(\Sigma \) is a closed subvariety.
12. Prove that not all degree 4 hypersurfaces in \(\mathbb{P}^3 \) contain a line.