What are ribbons and what do they tell us about Riemann surfaces?

Riemann Surfaces

Riemann surface = Connected compact complex 1-manifold

= Connected, projective, smooth algebraic curve over \(\mathbb{C} \).

Topology:

![Topology Diagram]

captured by genus \(g \geq 0 \).

But there’s much more.

Three perspectives

1. Branched covers

 Ex.: \(f(x) = \sqrt{x^2+1} \leq \text{“multivalued function”} \)

 Graph of \(f = \{ (x,y) \mid y^2 = x^2 + 1 \} \).

 Gives a Riemann surface \(X \) (of genus 1).

 Suggests another invariant = \# of branches = 3

 \(X \) also graph of \(g(y) = \sqrt{y^3 - 1} \).

 \# branches = 2.
Gonality $\gamma_X := \text{Smallest } d \text{ such that } X \text{ is the graph of a } d\text{-valued holomorphic function. }

\text{More precisely: Smallest } d \text{ such that } \exists \text{ surj. holomorphic map } X \to \mathbb{CP}^1

\text{Gonality } X = 1 \iff X \cong \mathbb{P}^1

\text{Thm (Segre): } \text{Gonality } \leq \left\lfloor \frac{\text{genus} X}{2} \right\rfloor + 1

\text{and all values from } 2, \ldots, \left\lfloor \frac{3}{2} \right\rfloor + 1 \text{ are attained.}

\section{2. Fields}

\{ \text{Riemann surfaces} \} \sim \{ \text{fin. gen. fields of tr. deg } 1/\mathbb{C} \}

X \rightarrow K = \text{field of mer. fun. on } X

\mathbb{C} \subset \mathbb{C}(t) \subset K

\text{Gen}(X) = \{ \text{min } d \mid K \text{ is a degree } d \text{ ext. of } \mathbb{C}(t) \}$
3. Projective geometry.

\[X \subset \mathbb{P}^N = \{ [x_0 : \ldots : x_N] \} \]

\[X = \text{zero locus of homog. pols in } x_0, \ldots, x_N. \]

\[S = \mathbb{C}[x_0, \ldots, x_N]. \]

\[X = \text{zero locus of a homog. ideal } I \subset S. \]

Invariant of \(I \) as an \(S \)-module:

\[I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \]

minimal free resolution.

\[F_i = \bigoplus_j S(-i-j) \quad \text{Invariants of } I. \]

Betti table of \(I = (\beta_{i,j}). \)

Remark: These depend on \(I \), which depends on the map \(X \to \mathbb{P}^n \).

But there is a canonical map

\[X \to \mathbb{P}^{g-1} \]

given by differential forms on \(X \).

Henceforth use this.

Conj (Green, rough):

Gonality of \(X \) <-> Support of betti table of \(X \subset \mathbb{P}^{g-1}. \)
Thm: (Aprodu-Tanaka, —) : Green's conj holds for "almost all" curves of every gonality. (Using Thm of Voisin for curves of max. gonality.)

Ribbons

Ex. Take $|P^2| = 3 \{[x:y:z] \}$

$XY - Z^2 = 0 \leadsto \quad \text{A smooth curve.}$

$XY = 0 \leadsto \quad \text{A singular curve.}$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0 \text{ at } p.$$

$X = 0 \quad \text{geom} \rightarrow \text{Smooth, same as } X = 0$

$\text{alg} \rightarrow \text{singular curve, i.e. everywhere!}$

Grothendieck - "Schemes" to formalize the second choice.

Scheme = top. space + sheaf of rings.

\[\text{"functions on } X\text{"} \]

may have nilpotents.
A scheme with nilpotents ("non-reduced") that is singular everywhere.

Reduced scheme with no sing. pts.

Easier example:

\[\mathcal{E} = \{ \cdot 3 \} \text{, Ring of functions } \mathbb{C}[X]/x^2. \]

Fact: Scheme \(\{ X^2 = 0 \} \subset \mathbb{P}^2 \) is locally iso to scheme \(\{ X = 0 \} \times \mathcal{E} \).

Def: A ribbon is a non-reduced scheme locally isomorphic to smooth curve \(\times \mathcal{E} \).

Can define genus of a ribbon.

\[\text{genus} (X^2 = 0) = 0. \]

\[\text{genus} ((XY - Z^2)^2) = 3. \]

\[\text{genus} (CP^1 \times \mathcal{E}) = -1. \]
Can also define "gonality" of a ribbon to make

Conj (Green's conj for ribbons, Bayer-Eisenbud 1990)

Gonality of ribbon \leftrightarrow Betti table of ribbon.

Thm : (-) Green's conj holds for ribbons.

Green's conj for a smooth curve of highest gonality (Voisin)

\[\Downarrow \]

Aprodu-Farkas-Voisin.

Green's conj for almost all curves of a given gonality.

Space of all curves

\[\begin{align*}
\text{Smooth} & \quad \text{Sing} \\
& \quad \text{Ribbons}
\end{align*} \]
Common feature of many statements in alg. geo.:

If it holds for one curve, then it holds for "almost all" curves.

So need to exhibit one curve.

Smooth curves are difficult to write down & analyze.

Introduce singularity \rightarrow simplifies global geometry
complicates local geometry algebra.

Non reduced structures takes this to an extreme.

Geometry of genus \rightarrow algebra of rings attached
up to CP^1

Sometimes easier!
\[x^3 + x^2 y + y^4 \]

\[\deg 3 \]

\[\deg 4 \]

\[x \]

Fix \(x \) ask: how many \(y \)?

\[f \in \mathbb{R}[y] \]

\[\sum_n \alpha_n f_n(y) + x^4 f \]

\(x \)-degree

\(y \)-degree