Towards a birational Classification of algebraic varieties - Work of Caucher Birkar.

1. Algebraic Varieties.

Algebraic variety = Set of solutions of polynomial equations.

Ex. \(X = \{ (x, y, z) \mid x^2 + y^2 = z^2 \} \) \(\xrightarrow{\psi} \) \(\dim X \)

Solutions in \(\mathbb{Z} \) = \{ Pythagorean triples \}.

Solutions in \(\mathbb{R} \) = cone over \(S^1 \).

Solutions in \(\mathbb{C} \) = complex cone over \(S^2 \).

Isomorphisms

An isomorphism between two complex varieties is a bijection \(\psi : Y \rightarrow X \)

\(\psi \) and \(\psi^{-1} \) are defined by polynomials.

Ex. \(Y = \{ (x, y, z) \mid xy = z^2 \} \) \(\xrightarrow{\sim} \) \(X \)

Via \(\psi : x \mapsto x + iy \), \(y \mapsto x - iy \), \(z \mapsto z \).
Problem: Describe all isomorphism classes.

2. Birational algebraic geometry.

A birational iso $\varphi: Y \sim \rightarrow X$ is a bijection $\varphi: U \rightarrow V$ between a dense open $U \subset X$ & $V \subset Y$ such that φ & φ^{-1} are defined by rational functions.

Ex: $\mathbb{C} \sim \rightarrow Y$ by

$$(s, t) \mapsto (s, \frac{t^2}{s}, t)$$

$$(x, z) \leftarrow (x, y, z)$$

Problem: Describe all birational iso classes.

1. Identify a distinguished element in each birat iso class ("canonical model")

2. Describe the canonical models.

$\dim 1$

1. There is a unique smooth & compact (\mathbb{P}^1). X in every birat class.

2. $g=0$ $g=1$ $g=2, 3, 4, \ldots.$

\mathbb{P}^1 1 dim family $3g-3$ dim family.
3. The minimal model program

2. The canonical class.

\(X \) an alg. variety.

3. Distinguished element \(K_X \in H^2(X, \mathbb{Q}) \).

\[K_X = c_1(\Omega_X) \quad \Omega_X = \text{Holomorphic cotangent bundle.} \]

Ex.

\[\dim X = 1, \ X \text{ smooth compact, } H^2(X) \cong \mathbb{Q}. \]

\[K_X = 2g-2. \]

- \(g=0 \) : \(K_X < 0 \)
- \(g=1 \) : \(K_X = 0 \)
- \(g=2 \) : \(K_X > 0 \)

4. The trichotomy.

\(X \) is

1. Fano if \(K_X \) is ant ample (\(K_X \cdot C < 0 \forall C \))
2. Calabi-Yau if \(K_X \) is trivial. (\(K_X \cdot C = 0 \forall C \))
3. Canonically polarised if \(K_X \) is ample (\(K_X \cdot C > 0 \forall C \)).

- spherical: small/trivial \(\pi_1 \), many \(\mathbb{Q} \) pts., big aut.
- flat: close to abelian \(\pi_1 \), many but not too many.
- hyperbolic: complicated \(\pi_1 \), few \(\mathbb{Q} \) -points, finite aut.
MMP - Up to birat. iso. every X can be broken down into these 3 archetypes.

$X \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots \rightarrow X_n$

Each step @ div. contraction or flip.

$X_n =$ can. polarized or

X_n with Fano/CY fibers.

\downarrow lower dim

$\dim X = 1$ - $X = X_n$.

$\dim X = 2$ - Only div. contr. needed. All X_i are smooth.

(Castelnuovo-Enriques, Early 1900)

$X \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots$

Contract C such that $K \cdot C < 0$.

In $\dim \geq 3$, introduces singularities.

Identify a class of singular X - a factorial terminal.

Preserved under divisorial contraction, but not small.

Flip = a surgery that improves singularities does not introduce K-neg curves.

$\dim = 3$: Flips exist.

There cannot be an inf. seq. of flips.

\Rightarrow MMP terminated + X_n is as expected.
Higher dim: Birkar, Cascini, Hacon, McKernan (2012)

1. Flips exist.
2. MMP terminates, if \(X \) is of general type (if flips are carefully chosen).
 (In this case \(X_n \) is canonically polarised.)

Conj: 1. MMP terminates in general.
 (Termination of flips).
2. If \(X_n \) is not canonically polarized, then it admits a CY fibration (Abundance).

Boundedness results - BAB conjecture.

Thm (Birkar). The class of Fano \(X \) of given dim with canonical \(A \)-terminal singularities form a finite dim family.

even \(\epsilon \)-log canonical for a given \(\epsilon > 0 \).

+ relative versions
+ existence of complements (nice elements in \(1 - mK_X \) for bounded \(m \)).

```
   Flip \( X \) \rightarrow \text{"Relative Fano"}
```

Thm \(\Rightarrow \) control over flips.

Aside: Boundedness of canonically polarized \(X \) of a given dim & volume is also known
 (Tsuji, Hacon-McKernan, Takayama).