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Let X be a generic non-algebraic K3 surface, so that PicX = 0. Then
the Mukai lattice of X is the hyperbolic lattice Z⊕Z. The Mukai vector of
a sheaf E is given by

v(E) = (rkE, rkE − c2(E)).

The only spherical object, up to shifts, is the structure sheaf OX . Let T
denote the spherical twist in OX .

Let kx denote the skyscraper sheaf at a point x ∈ X. Changing x has no
implications on anything, so it will be harmless to drop it from the notation.
It will also be convenient to set

I0 = k, the skyscraper sheaf at a point, and
In = TnI0.

In particular, we have I1 = I[1], where I is the ideal sheaf of a point. Note
that, in the Grothendieck group, we have

[In] = [In+2]

and
[I0]− [I1] = [OX ].

Our goal is to describe P StabX and its Thurston compactification. Or-
dinarily, we take the Thurston compactification to be the closure in the
infinite projective space whose coordinates are indexed by the spherical ob-
jects. Since there is only one spherical object, we must enlarge the set of
objects. A convenient choice is the set

S = {OX , In for n ∈ Z}.
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We summarize the description of the stability conditions from [1]. Every
stability condition has the form Tnσ, where σ is a standard stability condi-
tion. For us, the standard stability conditions correspond to the ones with
z ∈ R+ ∪ R0 in the notation of [1, Section 4]. Let σ be a strictly standard
stability condition, namely, one corresponding to z ∈ R+. Here is a pictorial
representation of σ:

The HN-factors of In for n ≥ 1, listed in decreasing order of phase, are

In ∼ I0 +OX [1] + · · ·+OX [2− n],

and those for I−n for n ≥ 2 are

I−n ∼ OX [n] + · · ·+Ox[2] + I−1.

Let m(OX) = c, m(I0) = b, and m(I−1) = a. Then the σ-mass vector
for the objects OX , . . . , I−3, I−2, I−1, I0, I1, I2, . . . is

m(σ) = [c : · · · : a+ 2c : a+ c : a : b : b+ c : b+ 2c : . . . ].

The a, b, c satisfy a (strict) triangle inequalities. The mass functional embeds
this (open) triangle into the infinite projective space.

The three edges of the triangle correspond to degenerations of the triangle
inequality. In terms of the central charge, they correspond to the following
three types of pictures:
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. Of these, the type (1) wall corresponds to z ∈ R0 and forms the boundary
between standard stability conditions and the T -translates of standard sta-
bility conditions. A stability condition on the other side of this wall looks
like this:

. This is the T -translate of the following standard stability condition:

, which corresponds to a condition near a type (2) wall. We thus have the
following picture:
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. Topologically, this is isomorphic to (0, 1)×R.
Let us now think about the mass functionals. Approaching the vertex

(1)∩ (2) is equivalent to taking the mass c of OX to 0. Then, by the triangle
inequality, the masses a and b have to be equal, and hence, projectively, we
get the point [0 : . . . 1 : 1 : 1 : . . . ]. Note that this point is T -invariant,
and hence is a common vertex of all the triangles. It corresponds to the
functional hom(OX ,−).

Approaching the vertex (1)∩ (3) is equivalent to taking the mass a of I0
to 0. Then the limiting point in the projective space is p0 = [1 : · · · : 2 : 1 :
0 : 1 : 2 : 3 : . . . ]. where the 0 is in the 0-th place.

How can we interpret the functional corresponding to p0? I do not think
it is a hom functional, but it is an “occurence” functional. It “counts” the
occurences of OX in the (minimised) complex that describes the object. In
other words, it is the rank of the complex at the generic point. (By the rank
of a complex, we mean the sum of the ranks of its cohomology sheaves.)

The point p0 is not T -stable. Let pn = Tnp0. Then the edge p−1–p0 is
the edge of type (3) in the standard triangle. Its points correspond to the
mass c of OX equalling a+b, and the corresponding point in projective space
is

(a+ b : · · · : 2b+ 3a : b+ 2a : a : b : 2b+ 3a : 3b+ 4a : . . . ) = ap−1 + bp0.

Thus, the compactified P Stab looks like this:
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So, topologically, the compactification is a disk, whose interior is P Stab.
The boundary is a circle with a distinguished point which is homBar(OX ,−).

Why is it impossible to cross a type (3) wall

The picture indicates that it is not possible to cross the type (3) wall in the
stability manifold. Let us try to understand why this should be the case.

Consider what happens on the type (3) wall. It is easier to think after
applying T (and writing the objects with correct shifts!)

The resulting stability condition violates the local finiteness condition.
How? It is easier to see that it violates the "support property", namely, there
are semistable objects whose classes approach 0. Let m and n be positive
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integers with n > m. Let Q be the structure sheaf of n generic points and
let Fm,n be the kernel of a generic map

Om
X → Q.

Then Fm,n is (probably) semi-stable, and of the same phase as OX . But for
appropriate choices of m and n, its class approaches 0.

Thus, the non local finiteness follows using the support property for
Bridgeland stability conditions, but it would be nice to get an explicit infinite
chain as well.
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