
Sample exercises for the Final

December 20, 2009

1. Compute the following indefinite integrals:

(a)

∫

x sin(3x2 + 2)dx

Let u = 3x2 + 2 then du = 6x dx hence du

6
= 6 dx. Therefore

∫

x sin(3x2 + 2)dx =

∫

sin u
du

6

= −1

6
cosu+ C

= −1

6
cos(3x2 + 2) + C

(b)

∫

x+ 3

x2
dx

∫

x+ 3

x2
dx =

∫

x

x2
dx+

∫

3

x2
dx =

= ln|x| − 3
1

x
+ C

(c)

∫

e
√
x

√
x
dx
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Let u = e
√
x, then

du = e
√
x

1

2
√
x
dx

therefore
∫

e
√
x

√
x
dx =

∫

2 du = 2u+ C = 2e
√
x + C

(d)

∫

1 + 2x√
1− x2

First of all let’s divide the integral in two parts:

∫

1 + 2x√
1− x2

=

∫

1√
1− x2

+

∫

2x√
1− x2

we know how to deal with the first part, the antiderivative is arcsin. For
the second part, le’ts make the substitution u = 1−x2. Then du = −2x dx
therefore −du = 2x dx. Hence (for the second part):

∫

2x√
1− x2

=

∫ −1√
u
du

=

∫

−u− 1

2 du

= −2u
1

2 + C

= −2
√
1− x2 + C

Hence the integral we began is

∫

1 + 2x√
1− x2

= arcsin x− 2
√
1− x2 + C

2. Compute the following integrals:

(a)

∫ π

2

−π

2

x cosx

1 + x4
dx

This function is odd and the integral is between −π

2
and π

2
. Hence the

answer is 0.
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(b)

∫ π

2

0

sin x√
cosx

dx

Let’s make the substitution u = cosx. Then du = − sin x dx and u(0) =

cos 0 = 1, u(π
4
) = cos(π

4
) =

√
2

2

∫ π

4

0

sin x√
cosx

dx = −
∫

√

2

2

1

1√
u

= −
∫

√

2

2

1

u− 1

2

= −[2
√
u]

1
√

2

1 = 2− 2
4
√
2

(c)

∫

3

0

|x2 − 4| dx

Let’s start by noticing that x2 − 4 = (x− 2)(x+ 2). We are interested in
the interval [0, 3]. In this interval x + 2 is always > 0 but x − 2 > 0 for
x ∈ (2, 3], and x−2 < 0 for x ∈ [0, 2). Hence we have to split the integral
into two parts!

∫

3

0

|x2 − 4| dx =

∫

2

0

|x2 − 4| dx+

∫

3

2

|x2 − 4| dx

=

∫

2

0

−(x2 − 4) dx+

∫

3

2

(x2 − 4) dx

=

[

−
(

x3

3
− 4x

)]2

0

+

[(

x3

3
− 4x

)]3

2

= −8

3
− 8 +

(

(9− 12−
(

8

3
− 8

))

= 13− 16
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(d)

∫ 1

2

−1

x2

√
1− x

dx
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Let u = 1− x. Then du = −dx. We still have to deal with the x2 on the
numerator: since u = 1− x get x = 1− u and x2 = 1− 2u+ u2.
We still have to compute the endpoints!! So u(−1) = 1 − (−1) = 2 and
u(1

2
) = 1 − 1

2
= 1

2
. Don’t get worried by the fact that we are computing

an integral where the upper limit of integration is smaller than the lower
one (that’s just minus the integral the other way around, so I’ll just flip
it). By substituting all of the information we have we get

∫ 1

2

−1

x2

√
1− x

dx =

∫ 1

2

2

−1− 2u+ u2

√
u

du

=

∫

2

1

2

(1− 2u+ u2)u− 1

2 du

=

∫

2

1

2

(u− 1

2 − 2u
1

2 + u
3

2 )

=

[

2u
1

2 − 2
2

3
u

3

2 +
5

2
u

5

2

]2

1

2

= 2
√
2− 4

3

√
8 +

2

5

√
32− (

2√
2
− 4

3

1√
8
+

2

5

1√
32

)

= 2
√
2− 8

3

√
2 +

2

5
4
√
2− (

√
2−

√
2

3
+ +

1

10
√
2
)

(e)
∫

1

0

(y + 3)100 dy

Let u = y + 3 then du = dy so
∫

1

0

(y + 3)100 dy =

∫

4

3

u100 du

[

u101

101

]4

3

=
4101

101
− 3101

101

3. State the fundamental theorem of calculus.
Use it to compute

d

dx

∫

3x−1

x

tan(2t− 1)
√
tdt

Is this computation correct:
∫

2

−1

1

x2
dx =

[−1

x

]2

−1

= −1

2
− 1 = −3

2
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Solution: Let f be a continuous function on [a, b]. Let

g(x) =

∫

x

a

f(t)dt a ≤ x ≤ b

Then g is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x).
Moreover, if F is any antiderivative of f then

∫

b

a

f(t) dt = F (b)− F (a)

To compute the derivative we first have to put the integral in better shape.

∫

3x−1

x

tan(2t− 1)
√
t dt =

∫

0

x

tan(2t− 1)
√
t dt +

∫

3x−1

0

tan(2t− 1)
√
t dt

= −
∫

x

0

tan(2t− 1)
√
t dt+

∫

3x−1

0

tan(2t− 1)
√
t dt

Now we have to take the derivative. Remember to apply the chain rule for
the second summand! (if you set g(x) =

∫

x

0
tan(2t − 1)

√
tdt then the second

summand is g(3x− 1)!)

d

dx

∫

3x−1

x

tan(2t− 1)
√
t dt = − tan(2x− 1)

√
x+ 3 tan(2(3x− 1)− 1)

√
3x− 1

= − tan(2x− 1)
√
x+ 3 tan(6x− 3)

√
3x− 1

As for what is wrong with the computation: we cannot apply the fundamental
theorem of Calculus in this case since 1

x2 is not continuous on [−1, 2].

4. If f is continuous and
∫

22

1
f(x)dx = 3, compute

∫

7

0

f(3x+ 1)dx

Solution: This is a nice way to see if you can do substitution integrals.
Let’s compute

∫

7

0
f(3x + 1)dx by making the substitution u = 3x + 1 then

du = 3dx hence du

3
= dx. Moreover, u(0) = 1 and u(7) = 22. Hence

∫

7

0

f(3x+ 1)dx =

∫

22

1

f(u)
du

3
=

1

3

∫

22

1

f(u) du =
1

3
· 3 = 1
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5. Find the volume of the solid obtained by considering the region bounded by
y = x3 and x = 1 and y = 0 and and rotating it along the line y = −2.
Solution: We will integrate with respect to x. The cross section at height x

is an annulus of inner radius 2 and the outer radius is 2 + x3. Hence get

V (S) =

∫

1

0

π((2 + x3)2 − 22) dx

=

∫

1

0

π(4x3 + x6) dx

= π

[

x4 +
x7

7

]1

0

= π

(

1 +
1

7

)

6. Find the points on the hyperbola y2 − x2 = 4 closest to the point (2, 0)
Solution: First of all, the distance of a point (x, y) from the point (2, 0) is

d =
√

(x− 2)2 + y2

and if the point is on the hyperbola we know that y2 = x2 + 4 so we get a
function of x

d(x) =
√

(x− 2)2 + x2 + 4

Optional (but might simplify computations): minimizing the distance is the
same thing is minimizing the distance squared (since x2 is an increasing func-
tion!). Hence we just have to minimize

f(x) = d(x)2 = (x− 2)2 + x2 + 4 = 2x2 − 4x+ 8

The domain for x is (−∞,+∞). By taking the derivative we get

f ′(x) = 4x− 4

which is zero only at x = 1. The second derivative here is f ′(1) = 4 so f has a
min here.
If x = 1 then y2 = x2 +4 = 5 hence y = ±

√
5 hence there are two such points,

(1,
√
5) and (1,−

√
5).

7. Find the volume of the solid obtained by rotating about the line x = −1 the
region between y = 1

x
and x = 1 and x = 3 and y = 0.

Solution: This is most easily done by cylindrical shells:

V =

∫

3

0

2π(2+x)
1

x
dx = 2π

∫

3

1

(

2

x
+ 1

)

dx = 2π [2 ln x+ x]3
1
= 2π(2 ln 3+2)
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8. Consider the following trapezoid:

l

B

b

θ

l

θ

(b and l are fixed numbers, B and θ are not). Find the angle θ that maximizes
the area (this problem is hard!!).
Solution:

Let h be the height of the trapezoid. Let A be the area of the trapezoid. Then
we know

A =
(b+B)h

2
We know that b is a fixed number so we just have to express B and h is terms
of the constants b and l and the one variable θ.
First of all

h = l · cos(θ − π

2
)

just to make things look better I can notice that cos(θ− π

2
) = cos(θ) cos(−π

2
)−

sin(θ) sin(−π

2
) = sin(θ) hence h = l · sin θ but I don’t even need to do this! (it

just gets slightly more complicated otherwise). Also

B = b+ 2l · sin(θ − π

2
) = b− 2l cos θ

Hence we find

A(θ) =
(2b− 2l · cos θ)l · sin θ

2
= (b− l cos θ)l sin θ = bl sin θ − l2 cos θ sin θ

The domain for θ is θ ∈ [0, π]. This is a close interval nad we know how to find
the max: we just check critical points and the endpoints of the interval.
For the endpoints: A(0) = 0 and A(π) = 0.
Let’s differentiate A(θ):

A′(θ) = bl cos θ − l2(− sin2 θ + cos2 θ) = bl cos θ + l2 sin2 θ − l2 cos2 θ

Wow, this is hard!! Let’s substitute sin2 θ = 1−cos2 θ so that we get a quadratic
equation in cos θ!

A′(θ) = bl cos θ + l2 − 2l2 cos2 θ = l(b cos θ + l − 2l cos2 θ)
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hence A′(θ) = 0 when

cos θ =
b±

√
b2 + 8l2

4l

OK, so we know there has to be at least one critical point (Rolle’s theorem!).
But are there two of them?
Well, notice that, since b, l > 0, b2+8l2 = b2+4l2+4l2 > 4l2 hence

√
b2 + 8l2 >√

4l2 = 2l. Hence
b+

√
b2 + 4l2

2l
>

2l

2l
= 1

so there can’t be a number θ such that cos θ = b+
√
b2+4l2

2l
!!!

Hence the critical point must be θ = arccos b−
√
b2+4l2

2l
. And this is definitely

the max since the area of the trapezoid is bigger than zero at least for some
θ so there must be a local max. (or just think of it like that: the area of this
theta must really be bigger than zero-proof by picture!).
OK, this was way too hard. But it was fun, wasn’t it? In the final I would at
least give you specific numbers to deal with. so don’t worry if you couldn’t do
this by yourself.

9. Find the area enclosed between the two curves x = 2y2 and x = 4 + y2.

Solution: We have to integrate with respect to y. But first let’s find the points
in which the two parabolas meet: 2y2 = 4 + y2 ⇒ y2 = 4 hence y = 2 and
y = −2. Therefore

A =

∫

2

−2

(4 + y2 − 2y2) dy =

∫

2

−2

(4− y2) dy =

[

4y − y3

3

]2

−2

= 16− 16

3
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