Sample exercises for the Final

December 12, 2009

1. Compute the following indefinite integrals:
(a)

$$
\int x \sin \left(3 x^{2}+2\right) d x
$$

(b)

$$
\int \frac{x+3}{x^{2}} d x
$$

(c)

$$
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x
$$

(d)

$$
\int \frac{1+2 x}{\sqrt{1-x^{2}}}
$$

2. Compute the following integrals:
(a)

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x \cos x}{1+x^{4}} d x
$$

(b)

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\sqrt{\cos x}} d x
$$

(c)

$$
\int_{0}^{3}\left|x^{2}-4\right| d x
$$

(d)

$$
\int_{-1}^{\frac{1}{2}} \frac{x^{2}}{\sqrt{1-x}} d x
$$

(e)

$$
\int_{0}^{1}(y+3)^{100} d y
$$

3. State the fundamental theorem of calculus.

Use it to compute

$$
\frac{d}{d x} \int_{x}^{3 x-1} \tan (2 t-1) \sqrt{t} d t
$$

Is this computation correct:

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left[\frac{-1}{x}\right]_{-1}^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

4. If f is continuous and $\int_{1}^{22} f(x) d x=3$, compute

$$
\int_{0}^{7} f(3 x+1) d x
$$

5. Find the volume of the solid obtained by considering the region bounded by $y=x^{3}$ and $x=1$ and $y=0$ and and rotating it along the line $y=-2$.
6. Find the points on the hyperbola $y^{2}-x^{2}=4$ closest to the point $(2,0)$
7. Find the volume of the solid obtained by rotating about the line $x=-1$ the region between $y=\frac{1}{x}$ and $x=1$ and $x=3$ and $y=0$.
8. Consider the following trapezoid:

(b and l are fixed numbers, B and θ are not). Find the angle θ that minimizes the area (this problem is hard!!).
9. Find the area enclosed between the two curves $x=2 y^{2}$ and $x=4+y^{2}$.

