Calculus I: Practice Midterm I

February 19, 2014

Name: \qquad

- Write your solutions in the space provided. Continue on the back for more space.
- Show your work unless asked otherwise.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- Good luck!

Question	Points	Score
1	7	
2	8	
3	10	
4	9	
5	8	
6	8	
Total:	50	

1. Below is the graph of a function f.

(a) (3 points) Use the graph to (approximately) compute the following:
(a) $f(-1), f(0)$, and $f(1)$.

Solution: $f(-1)=0, f(0)=2$, and $f(1)=3$.
(b) All x such that $f(x)=0$.

Solution: This is the set of x where the graph intersects the X-axis. These are $-1,2$, and 4 .
(c) The range of f.

Solution: The range of f is $[-1,3]$.
(d) (4 points) Let $g(x)=x^{2}+1$. What is $f(g(1))$? What is $g(f(1))$?

Solution:

$$
\begin{aligned}
& f(g(1))=f(2)=0 \\
& g(f(1))=g(3)=3^{2}+1=10
\end{aligned}
$$

2. (8 points) Let

$$
f(x)=\frac{e^{x}}{1+e^{x}}
$$

The graph of $f(x)$ is shown below

Does f have an inverse function? If yes, find a formula for $f^{-1}(y)$. If not, why not?

Solution: f has an inverse function because it is one-to-one (it satisfies the horizontal line test - each horizontal line intersects the graph in at most one point.)
To find a formula, let us write $y=f(x)$ and solve for x in terms of y. We have

$$
\begin{aligned}
y & =\frac{e^{x}}{1+e^{x}} \\
\left(1+e^{x}\right) y & =e^{x} \\
y+e^{x} y & =e^{x} \\
y & =e^{x}-e^{x} y \\
y & =(1-y) e^{x} \\
e^{x} & =\frac{y}{1-y} \\
x & =\ln \left(\frac{y}{1-y}\right) \\
x & =\ln y-\ln (1-y)
\end{aligned}
$$

So $f^{-1}(y)=\ln y-\ln (1-y)$.
3. Calculate each of the following limits, if it exists. Justify your answer.
(a) (3 points) $\lim _{t \rightarrow 0^{+}} e^{-10 / t}$

Solution: As $t \rightarrow 0^{+}$, the quantity $x=-10 / t$ becomes negative without bounds, that is, it approaches $-\infty$. So the given limit is equal to

$$
\lim _{x \rightarrow-\infty} e^{x}
$$

From the graph of e^{x}, we know that this limit is 0 .
(b) (3 points) $\lim _{x \rightarrow 5} \frac{x+10}{x-5}$

Solution: As $x \rightarrow 5$, the numerator approaches 15 but the denominator approaches 0 . Therefore, $\lim _{x \rightarrow 5} \frac{x+10}{x-5}$ cannot exist.
If you are skeptical, here is a more rigorous argument. Suppose $\lim _{x \rightarrow 5} \frac{x+10}{x-5}$ existed and was equal to (a finite real number) L. Then by the product rule for limits

$$
\begin{aligned}
\lim _{x \rightarrow 5}(x+10) & =\lim _{x \rightarrow 5}(x-5) \cdot \lim _{x \rightarrow 5} \frac{x+10}{x-5} \\
& =0 \cdot L=0
\end{aligned}
$$

However, $\lim _{x \rightarrow 5}(x+10)=15 \neq 0$. So our supposition was wrong.
(c) (4 points) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+10 x-1}{x^{2}-5}$

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+10 x-1}{x^{2}-5} & =\lim _{x \rightarrow \infty} \frac{x^{2}\left(3+10 / x-1 / x^{2}\right)}{x^{2}\left(1-5 / x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{3+10 / x-1 / x^{2}}{1-5 / x^{2}} \\
& =\frac{\lim _{x \rightarrow \infty} 3+10 / x-1 / x^{2}}{\lim _{x \rightarrow \infty} 1-5 / x^{2}} \\
& =\frac{3}{1}=3 .
\end{aligned}
$$

4. Let

$$
h(x)= \begin{cases}|x-1|-1 & \text { for } x<2 \\ 0 & \text { for } x=2 \\ x^{2}-4 & \text { for } x>2\end{cases}
$$

(a) (3 points) Compute $\lim _{x \rightarrow 2^{+}} h(x)$.

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} h(x) & =\lim _{x \rightarrow 2^{+}} x^{2}-4 \\
& =2^{2}-4=0
\end{aligned}
$$

(b) (3 points) Compute $\lim _{x \rightarrow 2^{-}} h(x)$.

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} h(x) & =\lim _{x \rightarrow 2^{-}}(|x-1|-1) \\
& =\lim _{x \rightarrow 2^{-}}|x-1|-1=0 .
\end{aligned}
$$

(c) (3 points) Is $h(x)$ continuous at 2?

Solution: Since the right hand limit is equal to the left hand $\operatorname{limit}^{\lim } \lim _{x \rightarrow 2} h(x)$ exists and is equal to 0 . Since we also have $h(2)=0$, the function is continuous.
5. (a) (4 points) Suppose $f(x)$ is given by the following graph

Using the graph, put the following in ascending order

$$
0, \quad f^{\prime}(d), \quad \frac{f(c)-f(b)}{c-b}, \quad f^{\prime}(b)
$$

Solution: Use that $f^{\prime}(d)$ is the slope of the tangent line at $(d, f(d))$ etc. and $\frac{f(c)-f(b)}{c-b}$ is the slope of the secant line through $(c, f(c))$ and $(b, f(b))$. By looking at these slopes, we get

$$
f^{\prime}(b)<\frac{f(c)-f(b)}{c-b}<0<f^{\prime}(d)
$$

(b) (4 points) Suppose $g(x)$ is given by the formula

$$
g(x)=2 x^{3}-3 x+4
$$

Compute $g(1)$ and $g^{\prime}(1)$. Use this to find an approximate value of $g(1.1)$.
Solution: By using the rules for derivatives, we get

$$
\begin{aligned}
g^{\prime}(x) & =6 x^{2}-3 \\
g^{\prime \prime}(x) & =12 x .
\end{aligned}
$$

Substituting $x=1$, we get $g^{\prime}(1)=3$ and $g^{\prime \prime}(1)=12$. We also have $g(1)=3$. So

$$
g(1.1)-g(1) \approx(1.1-1) g^{\prime}(1)=0.1 \cdot 3=0.3
$$

So $g(1.1) \approx g(1)+0.3=3.3$.
6. Let

$$
f(x)=\frac{3 x}{1+x}
$$

(a) (6 points) Use the definition of the derivative to find $f^{\prime}(2)$.

Solution: We use the definition:

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3(2+h)}{1+2+h}-\frac{6}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{6+3 h}{3+h}-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{6+3 h-6-2 h}{h(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{3+h} \\
& =\frac{1}{3}
\end{aligned}
$$

(b) (2 points) Is f increasing or decreasing at $x=2$?

Solution: $f^{\prime}(2)>0$ means that f is increasing at $x=2$.

