Calculus I: Practice Midterm I

February 13, 2014

Name: \qquad

- Write your solutions in the space provided. Continue on the back for more space.
- Show your work unless asked otherwise.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- Good luck!

Question	Points	Score
1	7	
2	8	
3	10	
4	9	
5	8	
6	8	
Total:	50	

1. Below is the graph of a function f.

(a) (3 points) Use the graph to (approximately) compute the following:
(a) $f(-1), f(0)$, and $f(1)$.
(b) All x such that $f(x)=0$.
(c) The range of f.
(d) (4 points) Let $g(x)=x^{2}+1$. What is $f(g(1))$? What is $g(f(1))$?
2. (8 points) Let

$$
f(x)=\frac{e^{x}}{1+e^{x}}
$$

The graph of $f(x)$ is shown below

Does f have an inverse function? If yes, find a formula for $f^{-1}(y)$. If not, why not?

Calculus I, Spring 2014

3. Calculate each of the following limits, if it exists. Justify your answer.
(a) (3 points) $\lim _{t \rightarrow 0^{+}} e^{-10 / t}$
(b) (3 points) $\lim _{x \rightarrow 5} \frac{x+10}{x-5}$
(c) (4 points) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+10 x-1}{x^{2}-5}$
4. Let

$$
h(x)= \begin{cases}|x-1|-1 & \text { for } x<2 \\ 0 & \text { for } x=2 \\ x^{2}-4 & \text { for } x>2\end{cases}
$$

(a) (3 points) Compute $\lim _{x \rightarrow 2^{+}} h(x)$.
(b) (3 points) Compute $\lim _{x \rightarrow 2^{-}} h(x)$.
(c) (3 points) Is $h(x)$ continuous at 2?
5. (a) (4 points) Suppose $f(x)$ is given by the following graph

Using the graph, put the following in ascending order

$$
0, \quad f^{\prime}(d), \quad \frac{f(c)-f(b)}{c-b}, \quad f^{\prime}(b)
$$

(b) (4 points) Suppose $g(x)$ is given by the formula

$$
g(x)=2 x^{3}-3 x+4
$$

Compute $g(1)$ and $g^{\prime}(1)$. Use this to find an approximate value of $g(1.1)$.
6. Let

$$
f(x)=\frac{3 x}{1+x}
$$

(a) (6 points) Use the definition of the derivative to find $f^{\prime}(2)$.
(b) (2 points) Is f increasing or decreasing at $x=2$?

