Calculus I: Practice Midterm I

February 13, 2014

Name: _____

- Write your solutions in the space provided. Continue on the back for more space.
- Show your work unless asked otherwise.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- Good luck!

Question	Points	Score
1	7	
2	8	
3	10	
4	9	
5	8	
6	8	
Total:	50	

1. Below is the graph of a function f.

- (a) (3 points) Use the graph to (approximately) compute the following:
 (a) *f*(−1), *f*(0), and *f*(1).
 - (b) All *x* such that f(x) = 0.
 - (c) The range of f.
- (d) (4 points) Let $g(x) = x^2 + 1$. What is f(g(1))? What is g(f(1))?

Calculus I, Spring 2014 2. (8 points) Let

$$f(x) = \frac{e^x}{1 + e^x}.$$

The graph of f(x) is shown below

Does *f* have an inverse function? If yes, find a formula for $f^{-1}(y)$. If not, why not?

Calculus I, Spring 2014

Practice Midterm I

3. Calculate each of the following limits, if it exists. Justify your answer.

(a) (3 points) $\lim_{t \to 0^+} e^{-10/t}$

(b) (3 points)
$$\lim_{x \to 5} \frac{x + 10}{x - 5}$$

(c) (4 points)
$$\lim_{x \to \infty} \frac{3x^2 + 10x - 1}{x^2 - 5}$$

Calculus I, Spring 2014	Practice Midterm I		Page 5 of 7
4. Let	$h(x) = \begin{cases} x-1 - 1\\ 0\\ x^2 - 4 \end{cases}$	for $x < 2$ for $x = 2$. for $x > 2$.	

(a) (3 points) Compute $\lim_{x\to 2^+} h(x)$.

(b) (3 points) Compute $\lim_{x\to 2^-} h(x)$.

(c) (3 points) Is h(x) continuous at 2?

5. (a) (4 points) Suppose f(x) is given by the following graph

Using the graph, put the following in ascending order

0,
$$f'(d)$$
, $\frac{f(c) - f(b)}{c - b}$, $f'(b)$.

(b) (4 points) Suppose g(x) is given by the formula

$$g(x) = 2x^3 - 3x + 4.$$

Compute g(1) and g'(1). Use this to find an approximate value of g(1.1).

Calculus I, Spring 2014

6. Let

$$f(x) = \frac{3x}{1+x}.$$

(a) (6 points) Use the definition of the derivative to find f'(2).

(b) (2 points) Is f increasing or decreasing at x = 2?