5. $\int\left(x^{2}+x^{-2}\right) d x=\frac{x^{3}}{3}+\frac{x^{-1}}{-1}+C=\frac{1}{3} x^{3}-\frac{1}{x}+C$
6. $\int\left(\sqrt{x^{3}}+\sqrt[3]{x^{2}}\right) d x=\int\left(x^{3 / 2}+x^{2 / 3}\right) d x=\frac{x^{5 / 2}}{5 / 2}+\frac{x^{5 / 3}}{5 / 3}+C=\frac{2}{5} x^{5 / 2}+\frac{3}{5} x^{5 / 3}+C$
7. $\int\left(x^{2}+1+\frac{1}{x^{2}+1}\right) d x=\frac{x^{3}}{3}+x+\tan ^{-1} x+C$
8. $\int\left(1+\tan ^{2} \alpha\right) d \alpha=\int \sec ^{2} \alpha d \alpha=\tan \alpha+C$
9. $\int \frac{\sin 2 x}{\sin x} d x=\int \frac{2 \sin x \cos x}{\sin x} d x=\int 2 \cos x d x=2 \sin x+C$
10. $\int_{1}^{2} \frac{(x-1)^{3}}{x^{2}} d x=\int_{1}^{2} \frac{x^{3}-3 x^{2}+3 x-1}{x^{2}} d x=\int_{1}^{2}\left(x-3+\frac{3}{x}-\frac{1}{x^{2}}\right) d x=\left[\frac{1}{2} x^{2}-3 x+3 \ln |x|+\frac{1}{x}\right]_{1}^{2}$

$$
=\left(2-6+3 \ln 2+\frac{1}{2}\right)-\left(\frac{1}{2}-3+0+1\right)=3 \ln 2-2
$$

49. $A=\int_{0}^{2}\left(2 y-y^{2}\right) d y=\left[y^{2}-\frac{1}{3} y^{3}\right]_{0}^{2}=\left(4-\frac{8}{3}\right)-0=\frac{4}{3}$
50. Let $u=2+x^{4}$. Then $d u=4 x^{3} d x$ and $x^{3} d x=\frac{1}{4} d u$,

$$
\text { so } \int x^{3}\left(2+x^{4}\right)^{5} d x=\int u^{5}\left(\frac{1}{4} d u\right)=\frac{1}{4} \frac{u^{6}}{6}+C=\frac{1}{24}\left(2+x^{4}\right)^{6}+C .
$$

4. Let $u=1-6 t$. Then $d u=-6 d t$ and $d t=-\frac{1}{6} d u$, so

$$
\int \frac{d t}{(1-6 t)^{4}}=\int \frac{-\frac{1}{6} d u}{u^{4}}=-\frac{1}{6} \int u^{-4} d u=-\frac{1}{6} \frac{u^{-3}}{-3}+C=\frac{1}{18 u^{3}}+C=\frac{1}{18(1-6 t)^{3}}+C .
$$

5. Let $u=\cos \theta$. Then $d u=-\sin \theta d \theta$ and $\sin \theta d \theta=-d u$, so

$$
\int \cos ^{3} \theta \sin \theta d \theta=\int u^{3}(-d u)=-\frac{u^{4}}{4}+C=-\frac{1}{4} \cos ^{4} \theta+C .
$$

6. Let $u=1 / x$. Then $d u=-1 / x^{2} d x$ and $1 / x^{2} d x=-d u$, so

$$
\int \frac{\sec ^{2}(1 / x)}{x^{2}} d x=\int \sec ^{2} u(-d u)=-\tan u+C=-\tan (1 / x)+C .
$$

8. Let $u=x^{3}$. Then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$, so $\int x^{2} e^{x^{3}} d x=\int e^{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} e^{u}+C=\frac{1}{3} e^{e^{3}}+C$.
9. Let $u=3 t+2$. Then $d u=3 d t$ and $d t=\frac{1}{3} d u$, so

$$
\int(3 t+2)^{2.4} d t=\int u^{2.4}\left(\frac{1}{3} d u\right)=\frac{1}{3} \frac{u^{3.4}}{3.4}+C=\frac{1}{10.2}(3 t+2)^{3.4}+C .
$$

18. Let $u=\sqrt{x}$. Then $d u=\frac{1}{2 \sqrt{x}} d x$ and $2 d u=\frac{1}{\sqrt{x}} d x$, so

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x=\int \sin u(2 d u)=-2 \cos u+C=-2 \cos \sqrt{x}+C
$$

28. Let $u=\cos t$. Then $d u=-\sin t d t$ and $\sin t d t=-d u$, so $\int e^{\cos t} \sin t d t=\int e^{u}(-d u)=-e^{u}+C=-e^{\cos t}+C$.
29. Let $u=\ln x$. Then $d u=(1 / x) d x$, so $\int \frac{\sin (\ln x)}{x} d x=\int \sin u d u=-\cos u+C=-\cos (\ln x)+C$.
30. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int \frac{x}{1+x^{4}} d x=\int \frac{\frac{1}{2} d u}{1+u^{2}}=\frac{1}{2} \tan ^{-1} u+C=\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+C$.
31. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{9} f(u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{9} f(u) d u=\frac{1}{2}(4)=2$.
