24. $f(x)=\frac{1-x e^{x}}{x+e^{x}} \stackrel{\text { QR }}{\Rightarrow} \quad f^{\prime}(x)=\frac{\left(x+e^{x}\right)\left(-x e^{x}\right)^{\prime}-\left(1-x e^{x}\right)\left(1+e^{x}\right)}{\left(x+e^{x}\right)^{2}}$

$$
\begin{aligned}
\stackrel{\mathrm{PR}}{\Rightarrow} \quad f^{\prime}(x) & =\frac{\left(x+e^{x}\right)\left[-\left(x e^{x}+e^{x} \cdot 1\right)\right]-\left(1+e^{x}-x e^{x}-x e^{2 x}\right)}{\left(x+e^{x}\right)^{2}} \\
& =\frac{-x^{2} e^{x}-x e^{x}-x e^{2 x}-e^{2 x}-1-e^{x}+x e^{x}+x e^{2 x}}{\left(x+e^{x}\right)^{2}}=\frac{-x^{2} e^{x}-e^{2 x}-e^{x}-1}{\left(x+e^{x}\right)^{2}}
\end{aligned}
$$

28. $f(x)=x^{5 / 2} e^{x} \Rightarrow f^{\prime}(x)=x^{5 / 2} e^{x}+e^{x} \cdot \frac{5}{2} x^{3 / 2}=\left(x^{5 / 2}+\frac{5}{2} x^{3 / 2}\right) e^{x}\left[\right.$ or $\left.\frac{1}{2} x^{3 / 2} e^{x}(2 x+5)\right] \Rightarrow$ $f^{\prime \prime}(x)=\left(x^{5 / 2}+\frac{5}{2} x^{3 / 2}\right) e^{x}+e^{x}\left(\frac{5}{2} x^{3 / 2}+\frac{15}{4} x^{1 / 2}\right)=\left(x^{5 / 2}+5 x^{3 / 2}+\frac{15}{4} x^{1 / 2}\right) e^{x}\left[\right.$ or $\left.\frac{1}{4} x^{1 / 2} e^{x}\left(4 x^{2}+20 x+15\right)\right]$
29. We are given that $f(2)=-3, g(2)=4, f^{\prime}(2)=-2$, and $g^{\prime}(2)=7$.
(a) $h(x)=5 f(x)-4 g(x) \Rightarrow h^{\prime}(x)=5 f^{\prime}(x)-4 g^{\prime}(x)$, so

$$
h^{\prime}(2)=5 f^{\prime}(2)-4 g^{\prime}(2)=5(-2)-4(7)=-10-28=-38 .
$$

(b) $h(x)=f(x) g(x) \quad \Rightarrow \quad h^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$, so

$$
h^{\prime}(2)=f(2) g^{\prime}(2)+g(2) f^{\prime}(2)=(-3)(7)+(4)(-2)=-21-8=-29 .
$$

(c) $h(x)=\frac{f(x)}{g(x)} \Rightarrow \quad h^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$, so

$$
h^{\prime}(2)=\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}}=\frac{4(-2)-(-3)(7)}{4^{2}}=\frac{-8+21}{16}=\frac{13}{16} .
$$

(d) $h(x)=\frac{g(x)}{1+f(x)} \Rightarrow h^{\prime}(x)=\frac{[1+f(x)] g^{\prime}(x)-g(x) f^{\prime}(x)}{[1+f(x)]^{2}}$, so

$$
h^{\prime}(2)=\frac{[1+f(2)] g^{\prime}(2)-g(2) f^{\prime}(2)}{[1+f(x)]^{2}}=\frac{[1+(-3)](7)-4(-2)}{[1+(-3)]^{2}}=\frac{-14+8}{(-2)^{2}}=\frac{-6}{4}=-\frac{3}{2} .
$$

5. $y=\sec \theta \tan \theta \Rightarrow y^{\prime}=\sec \theta\left(\sec ^{2} \theta\right)+\tan \theta(\sec \theta \tan \theta)=\sec \theta\left(\sec ^{2} \theta+\tan ^{2} \theta\right)$. Using the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$, we can write alternative forms of the answer as $\sec \theta\left(1+2 \tan ^{2} \theta\right)$ or $\sec \theta\left(2 \sec ^{2} \theta-1\right)$.
6. $y=\frac{1-\sec x}{\tan x} \Rightarrow$

$$
y^{\prime}=\frac{\tan x(-\sec x \tan x)-(1-\sec x)\left(\sec ^{2} x\right)}{(\tan x)^{2}}=\frac{\sec x\left(-\tan ^{2} x-\sec x+\sec ^{2} x\right)}{\tan ^{2} x}=\frac{\sec x(1-\sec x)}{\tan ^{2} x}
$$

21. $y=\sec x \Rightarrow y^{\prime}=\sec x \tan x$, so $y^{\prime}\left(\frac{\pi}{3}\right)=\sec \frac{\pi}{3} \tan \frac{\pi}{3}=2 \sqrt{3}$. An equation of the tangent line to the curve $y=\sec x$ at the point $\left(\frac{\pi}{3}, 2\right)$ is $y-2=2 \sqrt{3}\left(x-\frac{\pi}{3}\right)$ or $y=2 \sqrt{3} x+2-\frac{2}{3} \sqrt{3} \pi$.
22. $f(t)=\csc t \quad \Rightarrow \quad f^{\prime}(t)=-\csc t \cot t \quad \Rightarrow \quad f^{\prime \prime}(t)=-\left[\csc t\left(-\csc ^{2} t\right)+\cot t(-\csc t \cot t)\right]=\csc t\left(\csc ^{2} t+\cot ^{2} t\right)$, so $f^{\prime \prime}\left(\frac{\pi}{6}\right)=2\left(2^{2}+\sqrt{3}^{2}\right)=2(4+3)=14$.
23. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=\lim _{x \rightarrow 0} \frac{3 \sin 3 x}{3 x} \quad$ [multiply numerator and denominator by 3]

$$
\begin{aligned}
& =3 \lim _{3 x \rightarrow 0} \frac{\sin 3 x}{3 x} \quad[\text { as } x \rightarrow 0,3 x \rightarrow 0] \\
& =3 \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \quad[\operatorname{let} \theta=3 x] \\
& =3(1) \quad \text { [Equation 2] } \\
& =3
\end{aligned}
$$

44. $\lim _{x \rightarrow 0} \frac{\sin 3 x \sin 5 x}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{3 \sin 3 x}{3 x} \cdot \frac{5 \sin 5 x}{5 x}\right)=\lim _{x \rightarrow 0} \frac{3 \sin 3 x}{3 x} \cdot \lim _{x \rightarrow 0} \frac{5 \sin 5 x}{5 x}$

$$
=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot 5 \lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}=3(1) \cdot 5(1)=15
$$

2. Let $u=g(x)=2 x^{3}+5$ and $y=f(u)=u^{4}$. Then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\left(4 u^{3}\right)\left(6 x^{2}\right)=24 x^{2}\left(2 x^{3}+5\right)^{3}$.
3. Let $u=g(x)=\pi x$ and $y=f(u)=\tan u$. Then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\left(\sec ^{2} u\right)(\pi)=\pi \sec ^{2} \pi x$.
4. Using Formula 5 and the Chain Rule, $y=2^{\sin \pi x} \Rightarrow$
$y^{\prime}=2^{\sin \pi x}(\ln 2) \cdot \frac{d}{d x}(\sin \pi x)=2^{\sin \pi x}(\ln 2) \cdot \cos \pi x \cdot \pi=2^{\sin \pi x}(\pi \ln 2) \cos \pi x$
5. $y=\cos \left(x^{2}\right) \quad \Rightarrow \quad y^{\prime}=-\sin \left(x^{2}\right) \cdot 2 x=-2 x \sin \left(x^{2}\right) \quad \Rightarrow$
$y^{\prime \prime}=-2 x \cos \left(x^{2}\right) \cdot 2 x+\sin \left(x^{2}\right) \cdot(-2)=-4 x^{2} \cos \left(x^{2}\right)-2 \sin \left(x^{2}\right)$
6. $h(x)=\sqrt{4+3 f(x)} \Rightarrow h^{\prime}(x)=\frac{1}{2}(4+3 f(x))^{-1 / 2} \cdot 3 f^{\prime}(x)$, so
$h^{\prime}(1)=\frac{1}{2}(4+3 f(1))^{-1 / 2} \cdot 3 f^{\prime}(1)=\frac{1}{2}(4+3 \cdot 7)^{-1 / 2} \cdot 3 \cdot 4=\frac{6}{\sqrt{25}}=\frac{6}{5}$
7. (a) $h(x)=f(f(x)) \Rightarrow h^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)$. So $h^{\prime}(2)=f^{\prime}(f(2)) f^{\prime}(2)=f^{\prime}(1) f^{\prime}(2) \approx(-1)(-1)=1$.
(b) $g(x)=f\left(x^{2}\right) \Rightarrow g^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right)=f^{\prime}\left(x^{2}\right)(2 x) . \quad$ So $g^{\prime}(2)=f^{\prime}\left(2^{2}\right)(2 \cdot 2)=4 f^{\prime}(4) \approx 4(2)=8$.
