21. $y=f(x)=1+\sqrt{2+3 x} \quad(y \geq 1) \quad \Rightarrow \quad y-1=\sqrt{2+3 x} \quad \Rightarrow \quad(y-1)^{2}=2+3 x \quad \Rightarrow \quad(y-1)^{2}-2=3 x \quad \Rightarrow$ $x=\frac{1}{3}(y-1)^{2}-\frac{2}{3}$. Interchange x and $y: \quad y=\frac{1}{3}(x-1)^{2}-\frac{2}{3}$. So $f^{-1}(x)=\frac{1}{3}(x-1)^{2}-\frac{2}{3}$. Note that the domain of f^{-1} is $x \geq 1$.
22. $y=f(x)=\frac{4 x-1}{2 x+3} \Rightarrow y(2 x+3)=4 x-1 \Rightarrow 2 x y+3 y=4 x-1 \quad \Rightarrow \quad 3 y+1=4 x-2 x y \quad \Rightarrow$ $3 y+1=(4-2 y) x \Rightarrow x=\frac{3 y+1}{4-2 y}$. Interchange x and $y: y=\frac{3 x+1}{4-2 x}$. So $f^{-1}(x)=\frac{3 x+1}{4-2 x}$.
23. $y=f(x)=e^{2 x-1} \Rightarrow \ln y=2 x-1 \quad \Rightarrow \quad 1+\ln y=2 x \quad \Rightarrow \quad x=\frac{1}{2}(1+\ln y)$.

Interchange x and y : $\quad y=\frac{1}{2}(1+\ln x)$. So $f^{-1}(x)=\frac{1}{2}(1+\ln x)$.
40. $\ln (a+b)+\ln (a-b)-2 \ln c=\ln [(a+b)(a-b)]-\ln c^{2}$
[by Laws 1, 3]

$$
\begin{aligned}
& =\ln \frac{(a+b)(a-b)}{c^{2}} \\
& \text { or } \ln \frac{a^{2}-b^{2}}{c^{2}}
\end{aligned} \quad[\text { by Law 2] }
$$

61. (a) $n=f(t)=100 \cdot 2^{t / 3} \Rightarrow \frac{n}{100}=2^{t / 3} \Rightarrow \log _{2}\left(\frac{n}{100}\right)=\frac{t}{3} \Rightarrow t=3 \log _{2}\left(\frac{n}{100}\right)$. Using formula (10), we can write this as $t=f^{-1}(n)=3 \cdot \frac{\ln (n / 100)}{\ln 2}$. This function tells us how long it will take to obtain n bacteria (given the number n).
(b) $n=50,000 \Rightarrow t=f^{-1}(50,000)=3 \cdot \frac{\ln \left(\frac{50,000}{100}\right)}{\ln 2}=3\left(\frac{\ln 500}{\ln 2}\right) \approx 26.9$ hours
62. (a) Slope $=\frac{2948-2530}{42-36}=\frac{418}{6} \approx 69.67$
(b) Slope $=\frac{2948-2661}{42-38}=\frac{287}{4}=71.75$
(c) Slope $=\frac{2948-2806}{42-40}=\frac{142}{2}=71$
(d) Slope $=\frac{3080-2948}{44-42}=\frac{132}{2}=66$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes.
After being stable for a while, the patient's heart rate is dropping.
5. (a) $y=y(t)=40 t-16 t^{2}$. At $t=2, y=40(2)-16(2)^{2}=16$. The average velocity between times 2 and $2+h$ is

$$
\begin{aligned}
& v_{\text {ave }}=\frac{y(2+h)-y(2)}{(2+h)-2}=\frac{\left[40(2+h)-16(2+h)^{2}\right]-16}{h}=\frac{-24 h-16 h^{2}}{h}=-24-16 h \text {, if } h \neq 0 . \\
& \begin{array}{ll}
\text { (i) }[2,2.5]: h=0.5, v_{\text {ave }}=-32 \mathrm{ft} / \mathrm{s} & \text { (ii) }[2,2.1]: h=0.1, v_{\mathrm{ave}}=-25.6 \mathrm{ft} / \mathrm{s} \\
\text { (iii) }[2,2.05]: h=0.05, v_{\text {ave }}=-24.8 \mathrm{ft} / \mathrm{s} & \text { (iv) }[2,2.01]: h=0.01, v_{\text {ave }}=-24.16 \mathrm{ft} / \mathrm{s}
\end{array}
\end{aligned}
$$

(b) The instantaneous velocity when $t=2(h$ approaches 0$)$ is $-24 \mathrm{ft} / \mathrm{s}$.
8. (a) (i) $s=s(t)=2 \sin \pi t+3 \cos \pi t$. On the interval $[1,2], v_{\mathrm{ave}}=\frac{s(2)-s(1)}{2-1}=\frac{3-(-3)}{1}=6 \mathrm{~cm} / \mathrm{s}$.
(ii) On the interval $[1,1.1], v_{\text {ave }}=\frac{s(1.1)-s(1)}{1.1-1} \approx \frac{-3.471-(-3)}{0.1}=-4.71 \mathrm{~cm} / \mathrm{s}$.
(iii) On the interval $[1,1.01], v_{\mathrm{ave}}=\frac{s(1.01)-s(1)}{1.01-1} \approx \frac{-3.0613-(-3)}{0.01}=-6.13 \mathrm{~cm} / \mathrm{s}$.
(iv) On the interval $[1,1.001], v_{\text {ave }}=\frac{s(1.001)-s(1)}{1.001-1} \approx \frac{-3.00627-(-3)}{1.001-1}=-6.27 \mathrm{~cm} / \mathrm{s}$.
(b) The instantaneous velocity of the particle when $t=1$ appears to be about $-6.3 \mathrm{~cm} / \mathrm{s}$.
2. As x approaches 1 from the left, $f(x)$ approaches 3 ; and as x approaches 1 from the right, $f(x)$ approaches 7 . No, the limit does not exist because the left- and right-hand limits are different.
7. (a) $\lim _{t \rightarrow 0^{-}} g(t)=-1$
(b) $\lim _{t \rightarrow 0^{+}} g(t)=-2$
(c) $\lim _{t \rightarrow 0} g(t)$ does not exist because the limits in part (a) and part (b) are not equal.
(d) $\lim _{t \rightarrow 2^{-}} g(t)=2$
(e) $\lim _{t \rightarrow 2^{+}} g(t)=0$
(f) $\lim _{t \rightarrow 2} g(t)$ does not exist because the limits in part (d) and part (e) are not equal.
(g) $g(2)=1$
(h) $\lim _{t \rightarrow 4} g(t)=3$
9. (a) $\lim _{x \rightarrow-7} f(x)=-\infty$
(b) $\lim _{x \rightarrow-3} f(x)=\infty$
(c) $\lim _{x \rightarrow 0} f(x)=\infty$
(d) $\lim _{x \rightarrow 6^{-}} f(x)=-\infty$
(e) $\lim _{x \rightarrow 6^{+}} f(x)=\infty$
(f) The equations of the vertical asymptotes are $x=-7, x=-3, x=0$, and $x=6$.
11. From the graph of

$$
f(x)= \begin{cases}1+x & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x<1 \\ 2-x & \text { if } x \geq 1\end{cases}
$$

we see that $\lim _{x \rightarrow a} f(x)$ exists for all a except $a=-1$. Notice that the
 right and left limits are different at $a=-1$.

1. (a) $\lim _{x \rightarrow 2}[f(x)+5 g(x)]=\lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2}[5 g(x)] \quad$ [Limit Law 1]
$=\lim _{x \rightarrow 2} f(x)+5 \lim _{x \rightarrow 2} g(x) \quad$ [Limit Law 3]
(b) $\lim _{x \rightarrow 2}[g(x)]^{3}=\left[\lim _{x \rightarrow 2} g(x)\right]^{3} \quad[$ Limit Law 6]

$$
=(-2)^{3}=-8
$$

$$
=4+5(-2)=-6
$$

(c) $\lim _{x \rightarrow 2} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 2} f(x)} \quad$ [Limit Law 11]

$$
=\sqrt{4}=2
$$

$$
\begin{array}{rlr}
\begin{aligned}
\text { (d) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)} & =\frac{\lim _{x \rightarrow 2}[3 f(x)]}{\lim _{x \rightarrow 2} g(x)} \\
& \text { [Limit Law 5] } \\
& =\frac{3 \lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)}
\end{aligned} & \text { [Limit Law 3] } \\
& =\frac{3(4)}{-2}=-6
\end{aligned} \\
\text { (f) } \left.\begin{array}{rl}
\lim _{x \rightarrow 2} \frac{g(x) h(x)}{f(x)} & =\frac{\lim _{x \rightarrow 2}[g(x) h(x)]}{\lim _{x \rightarrow 2} f(x)} \\
& \text { [Limit Law 5] } \\
& =\frac{\lim _{x \rightarrow 2} g(x) \cdot \lim _{x \rightarrow 2} h(x)}{\lim _{x \rightarrow 2} f(x)} \\
& \text { [Limit Law 4] } \\
&
\end{array}\right]
\end{array}
$$

(e) Because the limit of the denominator is 0 , we can't use Limit Law 5. The given limit, $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$, does not exist because the denominator approaches 0 while the numerator approaches a nonzero number.
26. $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)=\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t(t+1)}\right)=\lim _{t \rightarrow 0} \frac{t+1-1}{t(t+1)}=\lim _{t \rightarrow 0} \frac{1}{t+1}=\frac{1}{0+1}=1$
38. We have $\lim _{x \rightarrow 1}(2 x)=2(1)=2$ and $\lim _{x \rightarrow 1}\left(x^{4}-x^{2}+2\right)=1^{4}-1^{2}+2=2$. Since $2 x \leq g(x) \leq x^{4}-x^{2}+2$ for all x, $\lim _{x \rightarrow 1} g(x)=2$ by the Squeeze Theorem.
41. $|x-3|=\left\{\begin{array}{ll}x-3 & \text { if } x-3 \geq 0 \\ -(x-3) & \text { if } x-3<0\end{array}= \begin{cases}x-3 & \text { if } x \geq 3 \\ 3-x & \text { if } x<3\end{cases}\right.$

Thus, $\lim _{x \rightarrow 3^{+}}(2 x+|x-3|)=\lim _{x \rightarrow 3^{+}}(2 x+x-3)=\lim _{x \rightarrow 3^{+}}(3 x-3)=3(3)-3=6$ and
$\lim _{x \rightarrow 3^{-}}(2 x+|x-3|)=\lim _{x \rightarrow 3^{-}}(2 x+3-x)=\lim _{x \rightarrow 3^{-}}(x+3)=3+3=6$. Since the left and right limits are equal,
$\lim _{x \rightarrow 3}(2 x+|x-3|)=6$.

